![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV4 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
Ref | Expression |
---|---|
dffunsALTV4 | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunsALTV 37548 | . 2 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
2 | cosselcnvrefrels4 37405 | . . 3 ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝑓𝑥 ∧ ≀ 𝑓 ∈ Rels )) | |
3 | cosselrels 37361 | . . . 4 ⊢ (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
4 | 3 | biantrud 532 | . . 3 ⊢ (𝑓 ∈ Rels → (∀𝑢∃*𝑥 𝑢𝑓𝑥 ↔ (∀𝑢∃*𝑥 𝑢𝑓𝑥 ∧ ≀ 𝑓 ∈ Rels ))) |
5 | 2, 4 | bitr4id 289 | . 2 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ∀𝑢∃*𝑥 𝑢𝑓𝑥)) |
6 | 1, 5 | rabimbieq 37114 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∃*wmo 2532 {crab 3432 class class class wbr 5148 ≀ ccoss 37038 Rels crels 37040 CnvRefRels ccnvrefrels 37046 FunsALTV cfunsALTV 37068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-coss 37276 df-rels 37350 df-ssr 37363 df-cnvrefs 37390 df-cnvrefrels 37391 df-funss 37545 df-funsALTV 37546 |
This theorem is referenced by: dffunsALTV5 37552 |
Copyright terms: Public domain | W3C validator |