| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV4 | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV 38675 | . 2 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 2 | cosselcnvrefrels4 38531 | . . 3 ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝑓𝑥 ∧ ≀ 𝑓 ∈ Rels )) | |
| 3 | cosselrels 38487 | . . . 4 ⊢ (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
| 4 | 3 | biantrud 531 | . . 3 ⊢ (𝑓 ∈ Rels → (∀𝑢∃*𝑥 𝑢𝑓𝑥 ↔ (∀𝑢∃*𝑥 𝑢𝑓𝑥 ∧ ≀ 𝑓 ∈ Rels ))) |
| 5 | 2, 4 | bitr4id 290 | . 2 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ∀𝑢∃*𝑥 𝑢𝑓𝑥)) |
| 6 | 1, 5 | rabimbieq 38240 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 {crab 3405 class class class wbr 5107 ≀ ccoss 38169 Rels crels 38171 CnvRefRels ccnvrefrels 38177 FunsALTV cfunsALTV 38199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-coss 38402 df-rels 38476 df-ssr 38489 df-cnvrefs 38516 df-cnvrefrels 38517 df-funss 38672 df-funsALTV 38673 |
| This theorem is referenced by: dffunsALTV5 38679 |
| Copyright terms: Public domain | W3C validator |