![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV | Structured version Visualization version GIF version |
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
elfunsALTV | ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunsALTV 38665 | . 2 ⊢ FunsALTV = {𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels } | |
2 | cosseq 38408 | . . 3 ⊢ (𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹) | |
3 | 2 | eleq1d 2824 | . 2 ⊢ (𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels )) |
4 | 1, 3 | rabeqel 38236 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≀ ccoss 38162 Rels crels 38164 CnvRefRels ccnvrefrels 38170 FunsALTV cfunsALTV 38192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-br 5149 df-opab 5211 df-coss 38393 df-funss 38662 df-funsALTV 38663 |
This theorem is referenced by: elfunsALTV2 38675 elfunsALTV3 38676 elfunsALTV4 38677 elfunsALTV5 38678 elfunsALTVfunALTV 38679 |
Copyright terms: Public domain | W3C validator |