Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV Structured version   Visualization version   GIF version

Theorem elfunsALTV 38648
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.)
Assertion
Ref Expression
elfunsALTV (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))

Proof of Theorem elfunsALTV
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffunsALTV 38639 . 2 FunsALTV = {𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels }
2 cosseq 38382 . . 3 (𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹)
32eleq1d 2829 . 2 (𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels ))
41, 3rabeqel 38210 1 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  ccoss 38135   Rels crels 38137   CnvRefRels ccnvrefrels 38143   FunsALTV cfunsALTV 38165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-br 5167  df-opab 5229  df-coss 38367  df-funss 38636  df-funsALTV 38637
This theorem is referenced by:  elfunsALTV2  38649  elfunsALTV3  38650  elfunsALTV4  38651  elfunsALTV5  38652  elfunsALTVfunALTV  38653
  Copyright terms: Public domain W3C validator