Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV | Structured version Visualization version GIF version |
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
elfunsALTV | ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunsALTV 36782 | . 2 ⊢ FunsALTV = {𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels } | |
2 | cosseq 36537 | . . 3 ⊢ (𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹) | |
3 | 2 | eleq1d 2825 | . 2 ⊢ (𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels )) |
4 | 1, 3 | rabeqel 36382 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≀ ccoss 36321 Rels crels 36323 CnvRefRels ccnvrefrels 36329 FunsALTV cfunsALTV 36351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-br 5080 df-opab 5142 df-coss 36525 df-funss 36779 df-funsALTV 36780 |
This theorem is referenced by: elfunsALTV2 36792 elfunsALTV3 36793 elfunsALTV4 36794 elfunsALTV5 36795 elfunsALTVfunALTV 36796 |
Copyright terms: Public domain | W3C validator |