Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV Structured version   Visualization version   GIF version

Theorem elfunsALTV 38691
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.)
Assertion
Ref Expression
elfunsALTV (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))

Proof of Theorem elfunsALTV
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffunsALTV 38682 . 2 FunsALTV = {𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels }
2 cosseq 38424 . . 3 (𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹)
32eleq1d 2814 . 2 (𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels ))
41, 3rabeqel 38250 1 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  ccoss 38176   Rels crels 38178   CnvRefRels ccnvrefrels 38184   FunsALTV cfunsALTV 38206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-br 5111  df-opab 5173  df-coss 38409  df-funss 38679  df-funsALTV 38680
This theorem is referenced by:  elfunsALTV2  38692  elfunsALTV3  38693  elfunsALTV4  38694  elfunsALTV5  38695  elfunsALTVfunALTV  38696
  Copyright terms: Public domain W3C validator