| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV | Structured version Visualization version GIF version | ||
| Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
| Ref | Expression |
|---|---|
| elfunsALTV | ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV 38791 | . 2 ⊢ FunsALTV = {𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels } | |
| 2 | cosseq 38538 | . . 3 ⊢ (𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹) | |
| 3 | 2 | eleq1d 2816 | . 2 ⊢ (𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels )) |
| 4 | 1, 3 | rabeqel 38301 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≀ ccoss 38232 Rels crels 38234 CnvRefRels ccnvrefrels 38240 FunsALTV cfunsALTV 38262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-br 5090 df-opab 5152 df-coss 38523 df-funss 38788 df-funsALTV 38789 |
| This theorem is referenced by: elfunsALTV2 38801 elfunsALTV3 38802 elfunsALTV4 38803 elfunsALTV5 38804 elfunsALTVfunALTV 38805 |
| Copyright terms: Public domain | W3C validator |