Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV | Structured version Visualization version GIF version |
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
elfunsALTV | ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunsALTV 36721 | . 2 ⊢ FunsALTV = {𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels } | |
2 | cosseq 36476 | . . 3 ⊢ (𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹) | |
3 | 2 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels )) |
4 | 1, 3 | rabeqel 36321 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≀ ccoss 36260 Rels crels 36262 CnvRefRels ccnvrefrels 36268 FunsALTV cfunsALTV 36290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-br 5071 df-opab 5133 df-coss 36464 df-funss 36718 df-funsALTV 36719 |
This theorem is referenced by: elfunsALTV2 36731 elfunsALTV3 36732 elfunsALTV4 36733 elfunsALTV5 36734 elfunsALTVfunALTV 36735 |
Copyright terms: Public domain | W3C validator |