![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV | Structured version Visualization version GIF version |
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
elfunsALTV | ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunsALTV 37195 | . 2 ⊢ FunsALTV = {𝑥 ∈ Rels ∣ ≀ 𝑥 ∈ CnvRefRels } | |
2 | cosseq 36938 | . . 3 ⊢ (𝑥 = 𝐹 → ≀ 𝑥 = ≀ 𝐹) | |
3 | 2 | eleq1d 2819 | . 2 ⊢ (𝑥 = 𝐹 → ( ≀ 𝑥 ∈ CnvRefRels ↔ ≀ 𝐹 ∈ CnvRefRels )) |
4 | 1, 3 | rabeqel 36764 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≀ ccoss 36684 Rels crels 36686 CnvRefRels ccnvrefrels 36692 FunsALTV cfunsALTV 36714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3449 df-in 3921 df-br 5110 df-opab 5172 df-coss 36923 df-funss 37192 df-funsALTV 37193 |
This theorem is referenced by: elfunsALTV2 37205 elfunsALTV3 37206 elfunsALTV4 37207 elfunsALTV5 37208 elfunsALTVfunALTV 37209 |
Copyright terms: Public domain | W3C validator |