| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV3 | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV 38706 | . 2 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 2 | cosselcnvrefrels3 38562 | . . 3 ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑓 ∈ Rels )) | |
| 3 | cosselrels 38519 | . . . 4 ⊢ (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
| 4 | 3 | biantrud 531 | . . 3 ⊢ (𝑓 ∈ Rels → (∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦) ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑓 ∈ Rels ))) |
| 5 | 2, 4 | bitr4id 290 | . 2 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦))) |
| 6 | 1, 5 | rabimbieq 38274 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {crab 3420 class class class wbr 5124 ≀ ccoss 38204 Rels crels 38206 CnvRefRels ccnvrefrels 38212 FunsALTV cfunsALTV 38234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-coss 38434 df-rels 38508 df-ssr 38521 df-cnvrefs 38548 df-cnvrefrels 38549 df-funss 38703 df-funsALTV 38704 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |