| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV2 | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV 38661 | . 2 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 2 | cosselcnvrefrels2 38515 | . . 3 ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels )) | |
| 3 | cosselrels 38473 | . . . 4 ⊢ (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
| 4 | 3 | biantrud 531 | . . 3 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ⊆ I ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels ))) |
| 5 | 2, 4 | bitr4id 290 | . 2 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ≀ 𝑓 ⊆ I )) |
| 6 | 1, 5 | rabimbieq 38226 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 I cid 5513 ≀ ccoss 38155 Rels crels 38157 CnvRefRels ccnvrefrels 38163 FunsALTV cfunsALTV 38185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-coss 38388 df-rels 38462 df-ssr 38475 df-cnvrefs 38502 df-cnvrefrels 38503 df-funss 38658 df-funsALTV 38659 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |