| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV2 | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV 38729 | . 2 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 2 | cosselcnvrefrels2 38583 | . . 3 ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels )) | |
| 3 | cosselrels 38541 | . . . 4 ⊢ (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
| 4 | 3 | biantrud 531 | . . 3 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ⊆ I ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels ))) |
| 5 | 2, 4 | bitr4id 290 | . 2 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ≀ 𝑓 ⊆ I )) |
| 6 | 1, 5 | rabimbieq 38294 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 I cid 5508 ≀ ccoss 38223 Rels crels 38225 CnvRefRels ccnvrefrels 38231 FunsALTV cfunsALTV 38253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-coss 38456 df-rels 38530 df-ssr 38543 df-cnvrefs 38570 df-cnvrefrels 38571 df-funss 38726 df-funsALTV 38727 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |