Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunsALTV2 Structured version   Visualization version   GIF version

Theorem dffunsALTV2 38644
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.)
Assertion
Ref Expression
dffunsALTV2 FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I }

Proof of Theorem dffunsALTV2
StepHypRef Expression
1 dffunsALTV 38643 . 2 FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }
2 cosselcnvrefrels2 38498 . . 3 ( ≀ 𝑓 ∈ CnvRefRels ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels ))
3 cosselrels 38456 . . . 4 (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels )
43biantrud 531 . . 3 (𝑓 ∈ Rels → ( ≀ 𝑓 ⊆ I ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels )))
52, 4bitr4id 290 . 2 (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ≀ 𝑓 ⊆ I ))
61, 5rabimbieq 38211 1 FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I }
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  {crab 3419  wss 3931   I cid 5557  ccoss 38141   Rels crels 38143   CnvRefRels ccnvrefrels 38149   FunsALTV cfunsALTV 38171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-coss 38371  df-rels 38445  df-ssr 38458  df-cnvrefs 38485  df-cnvrefrels 38486  df-funss 38640  df-funsALTV 38641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator