| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV2 | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunsALTV 38643 | . 2 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 2 | cosselcnvrefrels2 38498 | . . 3 ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels )) | |
| 3 | cosselrels 38456 | . . . 4 ⊢ (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
| 4 | 3 | biantrud 531 | . . 3 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ⊆ I ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels ))) |
| 5 | 2, 4 | bitr4id 290 | . 2 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ≀ 𝑓 ⊆ I )) |
| 6 | 1, 5 | rabimbieq 38211 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 ⊆ wss 3931 I cid 5557 ≀ ccoss 38141 Rels crels 38143 CnvRefRels ccnvrefrels 38149 FunsALTV cfunsALTV 38171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-coss 38371 df-rels 38445 df-ssr 38458 df-cnvrefs 38485 df-cnvrefrels 38486 df-funss 38640 df-funsALTV 38641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |