MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmo Structured version   Visualization version   GIF version

Theorem dfmo 2585
Description: Rederive df-mo 2529 from the old definition moeu 2572. (Contributed by Wolf Lammen, 27-May-2019.) (Proof modification is discouraged.) Use df-mo 2529 instead. (New usage is discouraged.)
Assertion
Ref Expression
dfmo (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfmo
StepHypRef Expression
1 moeu 2572 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 eu6 2563 . . 3 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
32imbi2i 335 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
4 dfmoeu 2525 . 2 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
51, 3, 43bitri 296 1 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532  wex 1774  ∃*wmo 2527  ∃!weu 2557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1775  df-nf 1779  df-mo 2529  df-eu 2558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator