Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfmo | Structured version Visualization version GIF version |
Description: Rederive df-mo 2541 from the old definition moeu 2585. (Contributed by Wolf Lammen, 27-May-2019.) (Proof modification is discouraged.) Use df-mo 2541 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
dfmo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu 2585 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | eu6 2576 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
3 | 2 | imbi2i 339 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
4 | dfmoeu 2537 | . 2 ⊢ ((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
5 | 1, 3, 4 | 3bitri 300 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 ∃wex 1786 ∃*wmo 2539 ∃!weu 2570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ex 1787 df-nf 1791 df-mo 2541 df-eu 2571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |