MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfv2 Structured version   Visualization version   GIF version

Theorem dfv2 3477
Description: Alternate definition of the universal class (see df-v 3476). (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
dfv2 V = {𝑥 ∣ ⊤}

Proof of Theorem dfv2
StepHypRef Expression
1 df-v 3476 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 2015 . . . 4 𝑥 = 𝑥
32bitru 1550 . . 3 (𝑥 = 𝑥 ↔ ⊤)
43abbii 2802 . 2 {𝑥𝑥 = 𝑥} = {𝑥 ∣ ⊤}
51, 4eqtri 2760 1 V = {𝑥 ∣ ⊤}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  {cab 2709  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-v 3476
This theorem is referenced by:  vex  3478  abv  3485  vn0  4338  ab0orv  4378  bj-abv  35878
  Copyright terms: Public domain W3C validator