| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfv2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the universal class (see df-v 3438). (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfv2 | ⊢ V = {𝑥 ∣ ⊤} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-v 3438 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 2 | equid 2013 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 3 | 2 | bitru 1550 | . . 3 ⊢ (𝑥 = 𝑥 ↔ ⊤) |
| 4 | 3 | abbii 2798 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ ⊤} |
| 5 | 1, 4 | eqtri 2754 | 1 ⊢ V = {𝑥 ∣ ⊤} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 {cab 2709 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-v 3438 |
| This theorem is referenced by: vex 3440 abv 3448 vn0 4295 ab0orv 4333 bj-abv 36939 |
| Copyright terms: Public domain | W3C validator |