MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfv2 Structured version   Visualization version   GIF version

Theorem dfv2 3425
Description: Alternate definition of the universal class (see df-v 3424). (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
dfv2 V = {𝑥 ∣ ⊤}

Proof of Theorem dfv2
StepHypRef Expression
1 df-v 3424 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 2016 . . . 4 𝑥 = 𝑥
32bitru 1548 . . 3 (𝑥 = 𝑥 ↔ ⊤)
43abbii 2809 . 2 {𝑥𝑥 = 𝑥} = {𝑥 ∣ ⊤}
51, 4eqtri 2766 1 V = {𝑥 ∣ ⊤}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  {cab 2715  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-v 3424
This theorem is referenced by:  vex  3426  abv  3433  vn0  4269  ab0orv  4309  bj-abv  35018
  Copyright terms: Public domain W3C validator