![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfv2 | Structured version Visualization version GIF version |
Description: Alternate definition of the universal class (see df-v 3476). (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
dfv2 | ⊢ V = {𝑥 ∣ ⊤} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-v 3476 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
2 | equid 2015 | . . . 4 ⊢ 𝑥 = 𝑥 | |
3 | 2 | bitru 1550 | . . 3 ⊢ (𝑥 = 𝑥 ↔ ⊤) |
4 | 3 | abbii 2802 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ ⊤} |
5 | 1, 4 | eqtri 2760 | 1 ⊢ V = {𝑥 ∣ ⊤} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 {cab 2709 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-v 3476 |
This theorem is referenced by: vex 3478 abv 3485 vn0 4338 ab0orv 4378 bj-abv 35878 |
Copyright terms: Public domain | W3C validator |