MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfv2 Structured version   Visualization version   GIF version

Theorem dfv2 3491
Description: Alternate definition of the universal class (see df-v 3490). (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
dfv2 V = {𝑥 ∣ ⊤}

Proof of Theorem dfv2
StepHypRef Expression
1 df-v 3490 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 2011 . . . 4 𝑥 = 𝑥
32bitru 1546 . . 3 (𝑥 = 𝑥 ↔ ⊤)
43abbii 2812 . 2 {𝑥𝑥 = 𝑥} = {𝑥 ∣ ⊤}
51, 4eqtri 2768 1 V = {𝑥 ∣ ⊤}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wtru 1538  {cab 2717  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-v 3490
This theorem is referenced by:  vex  3492  abv  3500  vn0  4368  ab0orv  4406  bj-abv  36872
  Copyright terms: Public domain W3C validator