Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfv2 | Structured version Visualization version GIF version |
Description: Alternate definition of the universal class (see df-v 3424). (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
dfv2 | ⊢ V = {𝑥 ∣ ⊤} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-v 3424 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
2 | equid 2016 | . . . 4 ⊢ 𝑥 = 𝑥 | |
3 | 2 | bitru 1548 | . . 3 ⊢ (𝑥 = 𝑥 ↔ ⊤) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ ⊤} |
5 | 1, 4 | eqtri 2766 | 1 ⊢ V = {𝑥 ∣ ⊤} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 {cab 2715 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-v 3424 |
This theorem is referenced by: vex 3426 abv 3433 vn0 4269 ab0orv 4309 bj-abv 35018 |
Copyright terms: Public domain | W3C validator |