MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfv2 Structured version   Visualization version   GIF version

Theorem dfv2 3476
Description: Alternate definition of the universal class (see df-v 3475). (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
dfv2 V = {𝑥 ∣ ⊤}

Proof of Theorem dfv2
StepHypRef Expression
1 df-v 3475 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 2014 . . . 4 𝑥 = 𝑥
32bitru 1549 . . 3 (𝑥 = 𝑥 ↔ ⊤)
43abbii 2801 . 2 {𝑥𝑥 = 𝑥} = {𝑥 ∣ ⊤}
51, 4eqtri 2759 1 V = {𝑥 ∣ ⊤}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  {cab 2708  Vcvv 3473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-v 3475
This theorem is referenced by:  vex  3477  abv  3484  vn0  4338  ab0orv  4378  bj-abv  36250
  Copyright terms: Public domain W3C validator