![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfv2 | Structured version Visualization version GIF version |
Description: Alternate definition of the universal class (see df-v 3490). (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
dfv2 | ⊢ V = {𝑥 ∣ ⊤} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-v 3490 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
2 | equid 2011 | . . . 4 ⊢ 𝑥 = 𝑥 | |
3 | 2 | bitru 1546 | . . 3 ⊢ (𝑥 = 𝑥 ↔ ⊤) |
4 | 3 | abbii 2812 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ ⊤} |
5 | 1, 4 | eqtri 2768 | 1 ⊢ V = {𝑥 ∣ ⊤} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 {cab 2717 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-v 3490 |
This theorem is referenced by: vex 3492 abv 3500 vn0 4368 ab0orv 4406 bj-abv 36872 |
Copyright terms: Public domain | W3C validator |