MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difn0 Structured version   Visualization version   GIF version

Theorem difn0 4347
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Assertion
Ref Expression
difn0 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)

Proof of Theorem difn0
StepHypRef Expression
1 eqimss 4022 . . 3 (𝐴 = 𝐵𝐴𝐵)
2 ssdif0 4346 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2sylib 218 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
43necon3i 2963 1 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2931  cdif 3928  wss 3931  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-ss 3948  df-nul 4314
This theorem is referenced by:  disjdsct  32647  bj-2upln1upl  36984
  Copyright terms: Public domain W3C validator