MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difn0 Structured version   Visualization version   GIF version

Theorem difn0 4312
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Assertion
Ref Expression
difn0 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)

Proof of Theorem difn0
StepHypRef Expression
1 eqimss 3988 . . 3 (𝐴 = 𝐵𝐴𝐵)
2 ssdif0 4311 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2sylib 218 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
43necon3i 2960 1 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2928  cdif 3894  wss 3897  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4279
This theorem is referenced by:  disjdsct  32676  bj-2upln1upl  37058
  Copyright terms: Public domain W3C validator