| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difn0 | Structured version Visualization version GIF version | ||
| Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| difn0 | ⊢ ((𝐴 ∖ 𝐵) ≠ ∅ → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4007 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif0 4331 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐵) = ∅) |
| 4 | 3 | necon3i 2958 | 1 ⊢ ((𝐴 ∖ 𝐵) ≠ ∅ → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 ∖ cdif 3913 ⊆ wss 3916 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 |
| This theorem is referenced by: disjdsct 32632 bj-2upln1upl 37007 |
| Copyright terms: Public domain | W3C validator |