MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difn0 Structured version   Visualization version   GIF version

Theorem difn0 4364
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Assertion
Ref Expression
difn0 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)

Proof of Theorem difn0
StepHypRef Expression
1 eqimss 4040 . . 3 (𝐴 = 𝐵𝐴𝐵)
2 ssdif0 4363 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2sylib 217 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
43necon3i 2972 1 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2939  cdif 3945  wss 3948  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  disjdsct  32358  bj-2upln1upl  36371
  Copyright terms: Public domain W3C validator