MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difn0 Structured version   Visualization version   GIF version

Theorem difn0 4376
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Assertion
Ref Expression
difn0 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)

Proof of Theorem difn0
StepHypRef Expression
1 eqimss 4057 . . 3 (𝐴 = 𝐵𝐴𝐵)
2 ssdif0 4375 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2sylib 218 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
43necon3i 2973 1 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2940  cdif 3963  wss 3966  c0 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3483  df-dif 3969  df-ss 3983  df-nul 4343
This theorem is referenced by:  disjdsct  32732  bj-2upln1upl  37019
  Copyright terms: Public domain W3C validator