![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difn0 | Structured version Visualization version GIF version |
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.) |
Ref | Expression |
---|---|
difn0 | ⊢ ((𝐴 ∖ 𝐵) ≠ ∅ → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4067 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssdif0 4389 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐵) = ∅) |
4 | 3 | necon3i 2979 | 1 ⊢ ((𝐴 ∖ 𝐵) ≠ ∅ → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: disjdsct 32716 bj-2upln1upl 36992 |
Copyright terms: Public domain | W3C validator |