MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difn0 Structured version   Visualization version   GIF version

Theorem difn0 4265
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
Assertion
Ref Expression
difn0 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)

Proof of Theorem difn0
StepHypRef Expression
1 eqimss 3943 . . 3 (𝐴 = 𝐵𝐴𝐵)
2 ssdif0 4264 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2sylib 221 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = ∅)
43necon3i 2964 1 ((𝐴𝐵) ≠ ∅ → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wne 2932  cdif 3850  wss 3853  c0 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-v 3400  df-dif 3856  df-in 3860  df-ss 3870  df-nul 4224
This theorem is referenced by:  disjdsct  30709  bj-2upln1upl  34900
  Copyright terms: Public domain W3C validator