![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difn0 | Structured version Visualization version GIF version |
Description: If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.) |
Ref | Expression |
---|---|
difn0 | ⊢ ((𝐴 ∖ 𝐵) ≠ ∅ → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4057 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssdif0 4375 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐵) = ∅) |
4 | 3 | necon3i 2973 | 1 ⊢ ((𝐴 ∖ 𝐵) ≠ ∅ → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2940 ∖ cdif 3963 ⊆ wss 3966 ∅c0 4342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3483 df-dif 3969 df-ss 3983 df-nul 4343 |
This theorem is referenced by: disjdsct 32732 bj-2upln1upl 37019 |
Copyright terms: Public domain | W3C validator |