Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdsct Structured version   Visualization version   GIF version

Theorem disjdsct 32680
Description: A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6605) (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
disjdsct.0 𝑥𝜑
disjdsct.1 𝑥𝐴
disjdsct.2 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
disjdsct.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjdsct (𝜑 → Fun (𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjdsct
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjdsct.3 . . . . . . . 8 (𝜑Disj 𝑥𝐴 𝐵)
2 disjdsct.1 . . . . . . . . 9 𝑥𝐴
32disjorsf 32561 . . . . . . . 8 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
41, 3sylib 218 . . . . . . 7 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
54r19.21bi 3234 . . . . . 6 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
65r19.21bi 3234 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
7 simpr3 1197 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)
8 disjdsct.2 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
9 eldifsni 4766 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
108, 9syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
1110sbimi 2074 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) → [𝑖 / 𝑥]𝐵 ≠ ∅)
12 sban 2080 . . . . . . . . . . . 12 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴))
13 disjdsct.0 . . . . . . . . . . . . . 14 𝑥𝜑
1413sbf 2271 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝜑𝜑)
152clelsb1fw 2902 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝑥𝐴𝑖𝐴)
1614, 15anbi12i 628 . . . . . . . . . . . 12 (([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴) ↔ (𝜑𝑖𝐴))
1712, 16bitri 275 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴))
18 sbsbc 3769 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ [𝑖 / 𝑥]𝐵 ≠ ∅)
19 sbcne12 4390 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵𝑖 / 𝑥∅)
20 csb0 4385 . . . . . . . . . . . . 13 𝑖 / 𝑥∅ = ∅
2120neeq2i 2997 . . . . . . . . . . . 12 (𝑖 / 𝑥𝐵𝑖 / 𝑥∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2218, 19, 213bitri 297 . . . . . . . . . . 11 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2311, 17, 223imtr3i 291 . . . . . . . . . 10 ((𝜑𝑖𝐴) → 𝑖 / 𝑥𝐵 ≠ ∅)
24233ad2antr1 1189 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵 ≠ ∅)
25 disj3 4429 . . . . . . . . . . . . 13 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2625biimpi 216 . . . . . . . . . . . 12 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2726neeq1d 2991 . . . . . . . . . . 11 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → (𝑖 / 𝑥𝐵 ≠ ∅ ↔ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅))
2827biimpa 476 . . . . . . . . . 10 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅)
29 difn0 4342 . . . . . . . . . 10 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3028, 29syl 17 . . . . . . . . 9 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
317, 24, 30syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
32313anassrs 1361 . . . . . . 7 ((((𝜑𝑖𝐴) ∧ 𝑗𝐴) ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3332ex 412 . . . . . 6 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3433orim2d 968 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
356, 34mpd 15 . . . 4 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3635ralrimiva 3132 . . 3 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3736ralrimiva 3132 . 2 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
38 nfmpt1 5220 . . 3 𝑥(𝑥𝐴𝐵)
39 eqid 2735 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4013, 2, 38, 39, 8funcnv4mpt 32647 . 2 (𝜑 → (Fun (𝑥𝐴𝐵) ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
4137, 40mpbird 257 1 (𝜑 → Fun (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wnf 1783  [wsb 2064  wcel 2108  wnfc 2883  wne 2932  wral 3051  [wsbc 3765  csb 3874  cdif 3923  cin 3925  c0 4308  {csn 4601  Disj wdisj 5086  cmpt 5201  ccnv 5653  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  esumrnmpt  34083  measvunilem  34243
  Copyright terms: Public domain W3C validator