Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdsct Structured version   Visualization version   GIF version

Theorem disjdsct 32188
Description: A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6618) (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
disjdsct.0 𝑥𝜑
disjdsct.1 𝑥𝐴
disjdsct.2 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
disjdsct.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjdsct (𝜑 → Fun (𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjdsct
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjdsct.3 . . . . . . . 8 (𝜑Disj 𝑥𝐴 𝐵)
2 disjdsct.1 . . . . . . . . 9 𝑥𝐴
32disjorsf 32075 . . . . . . . 8 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
41, 3sylib 217 . . . . . . 7 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
54r19.21bi 3247 . . . . . 6 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
65r19.21bi 3247 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
7 simpr3 1195 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)
8 disjdsct.2 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
9 eldifsni 4794 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
108, 9syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
1110sbimi 2076 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) → [𝑖 / 𝑥]𝐵 ≠ ∅)
12 sban 2082 . . . . . . . . . . . 12 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴))
13 disjdsct.0 . . . . . . . . . . . . . 14 𝑥𝜑
1413sbf 2261 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝜑𝜑)
152clelsb1fw 2906 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝑥𝐴𝑖𝐴)
1614, 15anbi12i 626 . . . . . . . . . . . 12 (([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴) ↔ (𝜑𝑖𝐴))
1712, 16bitri 274 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴))
18 sbsbc 3782 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ [𝑖 / 𝑥]𝐵 ≠ ∅)
19 sbcne12 4413 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵𝑖 / 𝑥∅)
20 csb0 4408 . . . . . . . . . . . . 13 𝑖 / 𝑥∅ = ∅
2120neeq2i 3005 . . . . . . . . . . . 12 (𝑖 / 𝑥𝐵𝑖 / 𝑥∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2218, 19, 213bitri 296 . . . . . . . . . . 11 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2311, 17, 223imtr3i 290 . . . . . . . . . 10 ((𝜑𝑖𝐴) → 𝑖 / 𝑥𝐵 ≠ ∅)
24233ad2antr1 1187 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵 ≠ ∅)
25 disj3 4454 . . . . . . . . . . . . 13 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2625biimpi 215 . . . . . . . . . . . 12 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2726neeq1d 2999 . . . . . . . . . . 11 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → (𝑖 / 𝑥𝐵 ≠ ∅ ↔ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅))
2827biimpa 476 . . . . . . . . . 10 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅)
29 difn0 4365 . . . . . . . . . 10 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3028, 29syl 17 . . . . . . . . 9 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
317, 24, 30syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
32313anassrs 1359 . . . . . . 7 ((((𝜑𝑖𝐴) ∧ 𝑗𝐴) ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3332ex 412 . . . . . 6 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3433orim2d 964 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
356, 34mpd 15 . . . 4 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3635ralrimiva 3145 . . 3 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3736ralrimiva 3145 . 2 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
38 nfmpt1 5257 . . 3 𝑥(𝑥𝐴𝐵)
39 eqid 2731 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4013, 2, 38, 39, 8funcnv4mpt 32158 . 2 (𝜑 → (Fun (𝑥𝐴𝐵) ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
4137, 40mpbird 256 1 (𝜑 → Fun (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wnf 1784  [wsb 2066  wcel 2105  wnfc 2882  wne 2939  wral 3060  [wsbc 3778  csb 3894  cdif 3946  cin 3948  c0 4323  {csn 4629  Disj wdisj 5114  cmpt 5232  ccnv 5676  Fun wfun 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by:  esumrnmpt  33345  measvunilem  33505
  Copyright terms: Public domain W3C validator