Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdsct Structured version   Visualization version   GIF version

Theorem disjdsct 32584
Description: A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6623) (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
disjdsct.0 𝑥𝜑
disjdsct.1 𝑥𝐴
disjdsct.2 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
disjdsct.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjdsct (𝜑 → Fun (𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjdsct
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjdsct.3 . . . . . . . 8 (𝜑Disj 𝑥𝐴 𝐵)
2 disjdsct.1 . . . . . . . . 9 𝑥𝐴
32disjorsf 32469 . . . . . . . 8 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
41, 3sylib 217 . . . . . . 7 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
54r19.21bi 3238 . . . . . 6 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
65r19.21bi 3238 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
7 simpr3 1193 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)
8 disjdsct.2 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
9 eldifsni 4795 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
108, 9syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
1110sbimi 2069 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) → [𝑖 / 𝑥]𝐵 ≠ ∅)
12 sban 2075 . . . . . . . . . . . 12 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴))
13 disjdsct.0 . . . . . . . . . . . . . 14 𝑥𝜑
1413sbf 2257 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝜑𝜑)
152clelsb1fw 2895 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝑥𝐴𝑖𝐴)
1614, 15anbi12i 626 . . . . . . . . . . . 12 (([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴) ↔ (𝜑𝑖𝐴))
1712, 16bitri 274 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴))
18 sbsbc 3777 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ [𝑖 / 𝑥]𝐵 ≠ ∅)
19 sbcne12 4414 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵𝑖 / 𝑥∅)
20 csb0 4409 . . . . . . . . . . . . 13 𝑖 / 𝑥∅ = ∅
2120neeq2i 2995 . . . . . . . . . . . 12 (𝑖 / 𝑥𝐵𝑖 / 𝑥∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2218, 19, 213bitri 296 . . . . . . . . . . 11 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2311, 17, 223imtr3i 290 . . . . . . . . . 10 ((𝜑𝑖𝐴) → 𝑖 / 𝑥𝐵 ≠ ∅)
24233ad2antr1 1185 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵 ≠ ∅)
25 disj3 4455 . . . . . . . . . . . . 13 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2625biimpi 215 . . . . . . . . . . . 12 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2726neeq1d 2989 . . . . . . . . . . 11 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → (𝑖 / 𝑥𝐵 ≠ ∅ ↔ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅))
2827biimpa 475 . . . . . . . . . 10 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅)
29 difn0 4364 . . . . . . . . . 10 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3028, 29syl 17 . . . . . . . . 9 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
317, 24, 30syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
32313anassrs 1357 . . . . . . 7 ((((𝜑𝑖𝐴) ∧ 𝑗𝐴) ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3332ex 411 . . . . . 6 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3433orim2d 964 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
356, 34mpd 15 . . . 4 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3635ralrimiva 3135 . . 3 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3736ralrimiva 3135 . 2 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
38 nfmpt1 5257 . . 3 𝑥(𝑥𝐴𝐵)
39 eqid 2725 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4013, 2, 38, 39, 8funcnv4mpt 32556 . 2 (𝜑 → (Fun (𝑥𝐴𝐵) ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
4137, 40mpbird 256 1 (𝜑 → Fun (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wnf 1777  [wsb 2059  wcel 2098  wnfc 2875  wne 2929  wral 3050  [wsbc 3773  csb 3889  cdif 3941  cin 3943  c0 4322  {csn 4630  Disj wdisj 5114  cmpt 5232  ccnv 5677  Fun wfun 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-fv 6557
This theorem is referenced by:  esumrnmpt  33822  measvunilem  33982
  Copyright terms: Public domain W3C validator