Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdsct Structured version   Visualization version   GIF version

Theorem disjdsct 31035
Description: A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6503) (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
disjdsct.0 𝑥𝜑
disjdsct.1 𝑥𝐴
disjdsct.2 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
disjdsct.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjdsct (𝜑 → Fun (𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjdsct
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjdsct.3 . . . . . . . 8 (𝜑Disj 𝑥𝐴 𝐵)
2 disjdsct.1 . . . . . . . . 9 𝑥𝐴
32disjorsf 30919 . . . . . . . 8 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
41, 3sylib 217 . . . . . . 7 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
54r19.21bi 3134 . . . . . 6 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
65r19.21bi 3134 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
7 simpr3 1195 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)
8 disjdsct.2 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
9 eldifsni 4723 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
108, 9syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
1110sbimi 2077 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) → [𝑖 / 𝑥]𝐵 ≠ ∅)
12 sban 2083 . . . . . . . . . . . 12 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴))
13 disjdsct.0 . . . . . . . . . . . . . 14 𝑥𝜑
1413sbf 2263 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝜑𝜑)
152clelsb1fw 2911 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝑥𝐴𝑖𝐴)
1614, 15anbi12i 627 . . . . . . . . . . . 12 (([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴) ↔ (𝜑𝑖𝐴))
1712, 16bitri 274 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴))
18 sbsbc 3720 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ [𝑖 / 𝑥]𝐵 ≠ ∅)
19 sbcne12 4346 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵𝑖 / 𝑥∅)
20 csb0 4341 . . . . . . . . . . . . 13 𝑖 / 𝑥∅ = ∅
2120neeq2i 3009 . . . . . . . . . . . 12 (𝑖 / 𝑥𝐵𝑖 / 𝑥∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2218, 19, 213bitri 297 . . . . . . . . . . 11 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2311, 17, 223imtr3i 291 . . . . . . . . . 10 ((𝜑𝑖𝐴) → 𝑖 / 𝑥𝐵 ≠ ∅)
24233ad2antr1 1187 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵 ≠ ∅)
25 disj3 4387 . . . . . . . . . . . . 13 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2625biimpi 215 . . . . . . . . . . . 12 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2726neeq1d 3003 . . . . . . . . . . 11 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → (𝑖 / 𝑥𝐵 ≠ ∅ ↔ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅))
2827biimpa 477 . . . . . . . . . 10 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅)
29 difn0 4298 . . . . . . . . . 10 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3028, 29syl 17 . . . . . . . . 9 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
317, 24, 30syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
32313anassrs 1359 . . . . . . 7 ((((𝜑𝑖𝐴) ∧ 𝑗𝐴) ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3332ex 413 . . . . . 6 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3433orim2d 964 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
356, 34mpd 15 . . . 4 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3635ralrimiva 3103 . . 3 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3736ralrimiva 3103 . 2 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
38 nfmpt1 5182 . . 3 𝑥(𝑥𝐴𝐵)
39 eqid 2738 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4013, 2, 38, 39, 8funcnv4mpt 31006 . 2 (𝜑 → (Fun (𝑥𝐴𝐵) ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
4137, 40mpbird 256 1 (𝜑 → Fun (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wnf 1786  [wsb 2067  wcel 2106  wnfc 2887  wne 2943  wral 3064  [wsbc 3716  csb 3832  cdif 3884  cin 3886  c0 4256  {csn 4561  Disj wdisj 5039  cmpt 5157  ccnv 5588  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  esumrnmpt  32020  measvunilem  32180
  Copyright terms: Public domain W3C validator