MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifn0 Structured version   Visualization version   GIF version

Theorem pssdifn0 4319
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
pssdifn0 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)

Proof of Theorem pssdifn0
StepHypRef Expression
1 ssdif0 4317 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
2 eqss 3951 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32simplbi2 500 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐴 = 𝐵))
41, 3biimtrrid 243 . . 3 (𝐴𝐵 → ((𝐵𝐴) = ∅ → 𝐴 = 𝐵))
54necon3d 2946 . 2 (𝐴𝐵 → (𝐴𝐵 → (𝐵𝐴) ≠ ∅))
65imp 406 1 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2925  cdif 3900  wss 3903  c0 4284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3438  df-dif 3906  df-ss 3920  df-nul 4285
This theorem is referenced by:  pssdif  4320  tz7.7  6333  domdifsn  8977  inf3lem3  9526  isf32lem6  10252  fclscf  23910  flimfnfcls  23913  lebnumlem1  24858  lebnumlem2  24859  lebnumlem3  24860  ig1peu  26078  ig1pdvds  26083  qsidomlem2  33390  qsdrng  33434  divrngidl  38008
  Copyright terms: Public domain W3C validator