MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifn0 Structured version   Visualization version   GIF version

Theorem pssdifn0 4296
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
pssdifn0 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)

Proof of Theorem pssdifn0
StepHypRef Expression
1 ssdif0 4294 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
2 eqss 3932 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32simplbi2 500 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐴 = 𝐵))
41, 3syl5bir 242 . . 3 (𝐴𝐵 → ((𝐵𝐴) = ∅ → 𝐴 = 𝐵))
54necon3d 2963 . 2 (𝐴𝐵 → (𝐴𝐵 → (𝐵𝐴) ≠ ∅))
65imp 406 1 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wne 2942  cdif 3880  wss 3883  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  pssdif  4297  tz7.7  6277  domdifsn  8795  inf3lem3  9318  isf32lem6  10045  fclscf  23084  flimfnfcls  23087  lebnumlem1  24030  lebnumlem2  24031  lebnumlem3  24032  ig1peu  25241  ig1pdvds  25246  qsidomlem2  31531  divrngidl  36113
  Copyright terms: Public domain W3C validator