| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssdifn0 | Structured version Visualization version GIF version | ||
| Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| pssdifn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 4331 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
| 2 | eqss 3964 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | simplbi2 500 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐴 = 𝐵)) |
| 4 | 1, 3 | biimtrrid 243 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∖ 𝐴) = ∅ → 𝐴 = 𝐵)) |
| 5 | 4 | necon3d 2947 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅)) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2926 ∖ cdif 3913 ⊆ wss 3916 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 |
| This theorem is referenced by: pssdif 4334 tz7.7 6360 domdifsn 9027 inf3lem3 9589 isf32lem6 10317 fclscf 23918 flimfnfcls 23921 lebnumlem1 24866 lebnumlem2 24867 lebnumlem3 24868 ig1peu 26086 ig1pdvds 26091 qsidomlem2 33430 qsdrng 33474 divrngidl 38017 |
| Copyright terms: Public domain | W3C validator |