MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifn0 Structured version   Visualization version   GIF version

Theorem pssdifn0 4365
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
pssdifn0 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)

Proof of Theorem pssdifn0
StepHypRef Expression
1 ssdif0 4363 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
2 eqss 3997 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32simplbi2 501 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐴 = 𝐵))
41, 3biimtrrid 242 . . 3 (𝐴𝐵 → ((𝐵𝐴) = ∅ → 𝐴 = 𝐵))
54necon3d 2961 . 2 (𝐴𝐵 → (𝐴𝐵 → (𝐵𝐴) ≠ ∅))
65imp 407 1 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wne 2940  cdif 3945  wss 3948  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  pssdif  4366  tz7.7  6390  domdifsn  9053  inf3lem3  9624  isf32lem6  10352  fclscf  23528  flimfnfcls  23531  lebnumlem1  24476  lebnumlem2  24477  lebnumlem3  24478  ig1peu  25688  ig1pdvds  25693  qsidomlem2  32567  qsdrng  32606  divrngidl  36891
  Copyright terms: Public domain W3C validator