MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifn0 Structured version   Visualization version   GIF version

Theorem pssdifn0 4299
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
pssdifn0 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)

Proof of Theorem pssdifn0
StepHypRef Expression
1 ssdif0 4297 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
2 eqss 3936 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32simplbi2 501 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐴 = 𝐵))
41, 3syl5bir 242 . . 3 (𝐴𝐵 → ((𝐵𝐴) = ∅ → 𝐴 = 𝐵))
54necon3d 2964 . 2 (𝐴𝐵 → (𝐴𝐵 → (𝐵𝐴) ≠ ∅))
65imp 407 1 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wne 2943  cdif 3884  wss 3887  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  pssdif  4300  tz7.7  6292  domdifsn  8841  inf3lem3  9388  isf32lem6  10114  fclscf  23176  flimfnfcls  23179  lebnumlem1  24124  lebnumlem2  24125  lebnumlem3  24126  ig1peu  25336  ig1pdvds  25341  qsidomlem2  31629  divrngidl  36186
  Copyright terms: Public domain W3C validator