Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssdifn0 | Structured version Visualization version GIF version |
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
pssdifn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4263 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
2 | eqss 3908 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | 2 | simplbi2 505 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5bir 246 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∖ 𝐴) = ∅ → 𝐴 = 𝐵)) |
5 | 4 | necon3d 2973 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅)) |
6 | 5 | imp 411 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ≠ wne 2952 ∖ cdif 3856 ⊆ wss 3859 ∅c0 4226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-v 3412 df-dif 3862 df-in 3866 df-ss 3876 df-nul 4227 |
This theorem is referenced by: pssdif 4266 tz7.7 6196 domdifsn 8621 inf3lem3 9119 isf32lem6 9811 fclscf 22718 flimfnfcls 22721 lebnumlem1 23655 lebnumlem2 23656 lebnumlem3 23657 ig1peu 24864 ig1pdvds 24869 qsidomlem2 31143 divrngidl 35739 |
Copyright terms: Public domain | W3C validator |