MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifn0 Structured version   Visualization version   GIF version

Theorem pssdifn0 4391
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
pssdifn0 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)

Proof of Theorem pssdifn0
StepHypRef Expression
1 ssdif0 4389 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
2 eqss 4024 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32simplbi2 500 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐴 = 𝐵))
41, 3biimtrrid 243 . . 3 (𝐴𝐵 → ((𝐵𝐴) = ∅ → 𝐴 = 𝐵))
54necon3d 2967 . 2 (𝐴𝐵 → (𝐴𝐵 → (𝐵𝐴) ≠ ∅))
65imp 406 1 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wne 2946  cdif 3973  wss 3976  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353
This theorem is referenced by:  pssdif  4392  tz7.7  6423  domdifsn  9122  inf3lem3  9701  isf32lem6  10429  fclscf  24056  flimfnfcls  24059  lebnumlem1  25014  lebnumlem2  25015  lebnumlem3  25016  ig1peu  26236  ig1pdvds  26241  qsidomlem2  33448  qsdrng  33492  divrngidl  37990
  Copyright terms: Public domain W3C validator