![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssdifn0 | Structured version Visualization version GIF version |
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
pssdifn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4375 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
2 | eqss 4014 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | 2 | simplbi2 500 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐴 = 𝐵)) |
4 | 1, 3 | biimtrrid 243 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∖ 𝐴) = ∅ → 𝐴 = 𝐵)) |
5 | 4 | necon3d 2961 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅)) |
6 | 5 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ≠ wne 2940 ∖ cdif 3963 ⊆ wss 3966 ∅c0 4342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3483 df-dif 3969 df-ss 3983 df-nul 4343 |
This theorem is referenced by: pssdif 4378 tz7.7 6418 domdifsn 9102 inf3lem3 9677 isf32lem6 10405 fclscf 24058 flimfnfcls 24061 lebnumlem1 25018 lebnumlem2 25019 lebnumlem3 25020 ig1peu 26240 ig1pdvds 26245 qsidomlem2 33493 qsdrng 33537 divrngidl 38029 |
Copyright terms: Public domain | W3C validator |