MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifn0 Structured version   Visualization version   GIF version

Theorem pssdifn0 4315
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
pssdifn0 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)

Proof of Theorem pssdifn0
StepHypRef Expression
1 ssdif0 4313 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
2 eqss 3945 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32simplbi2 500 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐴 = 𝐵))
41, 3biimtrrid 243 . . 3 (𝐴𝐵 → ((𝐵𝐴) = ∅ → 𝐴 = 𝐵))
54necon3d 2949 . 2 (𝐴𝐵 → (𝐴𝐵 → (𝐵𝐴) ≠ ∅))
65imp 406 1 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wne 2928  cdif 3894  wss 3897  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4281
This theorem is referenced by:  pssdif  4316  tz7.7  6332  domdifsn  8973  inf3lem3  9520  isf32lem6  10249  fclscf  23940  flimfnfcls  23943  lebnumlem1  24887  lebnumlem2  24888  lebnumlem3  24889  ig1peu  26107  ig1pdvds  26112  qsidomlem2  33418  qsdrng  33462  divrngidl  38076
  Copyright terms: Public domain W3C validator