MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2 Structured version   Visualization version   GIF version

Theorem disjeq2 5095
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))

Proof of Theorem disjeq2
StepHypRef Expression
1 eqimss2 4023 . . . 4 (𝐵 = 𝐶𝐶𝐵)
21ralimi 3074 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐶𝐵)
3 disjss2 5094 . . 3 (∀𝑥𝐴 𝐶𝐵 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
42, 3syl 17 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
5 eqimss 4022 . . . 4 (𝐵 = 𝐶𝐵𝐶)
65ralimi 3074 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐵𝐶)
7 disjss2 5094 . . 3 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
86, 7syl 17 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
94, 8impbid 212 1 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wral 3052  wss 3931  Disj wdisj 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2540  df-cleq 2728  df-clel 2810  df-ral 3053  df-rmo 3364  df-ss 3948  df-disj 5092
This theorem is referenced by:  disjeq2dv  5096  voliun  25512  carsgclctunlem2  34356  disjeq12i  36216  mblfinlem2  37687  voliunnfl  37693
  Copyright terms: Public domain W3C validator