MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2 Structured version   Visualization version   GIF version

Theorem disjeq2 5113
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))

Proof of Theorem disjeq2
StepHypRef Expression
1 eqimss2 4042 . . . 4 (𝐵 = 𝐶𝐶𝐵)
21ralimi 3082 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐶𝐵)
3 disjss2 5112 . . 3 (∀𝑥𝐴 𝐶𝐵 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
42, 3syl 17 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
5 eqimss 4041 . . . 4 (𝐵 = 𝐶𝐵𝐶)
65ralimi 3082 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐵𝐶)
7 disjss2 5112 . . 3 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
86, 7syl 17 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
94, 8impbid 212 1 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wral 3060  wss 3950  Disj wdisj 5109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2539  df-cleq 2728  df-clel 2815  df-ral 3061  df-rmo 3379  df-ss 3967  df-disj 5110
This theorem is referenced by:  disjeq2dv  5114  voliun  25590  carsgclctunlem2  34322  disjeq12i  36195  mblfinlem2  37666  voliunnfl  37672
  Copyright terms: Public domain W3C validator