MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2 Structured version   Visualization version   GIF version

Theorem disjeq2 5043
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))

Proof of Theorem disjeq2
StepHypRef Expression
1 eqimss2 3978 . . . 4 (𝐵 = 𝐶𝐶𝐵)
21ralimi 3087 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐶𝐵)
3 disjss2 5042 . . 3 (∀𝑥𝐴 𝐶𝐵 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
42, 3syl 17 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
5 eqimss 3977 . . . 4 (𝐵 = 𝐶𝐵𝐶)
65ralimi 3087 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐵𝐶)
7 disjss2 5042 . . 3 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
86, 7syl 17 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
94, 8impbid 211 1 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wral 3064  wss 3887  Disj wdisj 5039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rmo 3071  df-v 3434  df-in 3894  df-ss 3904  df-disj 5040
This theorem is referenced by:  disjeq2dv  5044  voliun  24718  carsgclctunlem2  32286  mblfinlem2  35815  voliunnfl  35821
  Copyright terms: Public domain W3C validator