![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 4055 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐶 ⊆ 𝐵) | |
2 | 1 | ralimi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
3 | disjss2 5118 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) |
5 | eqimss 4054 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐵 ⊆ 𝐶) | |
6 | 5 | ralimi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
7 | disjss2 5118 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
9 | 4, 8 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∀wral 3059 ⊆ wss 3963 Disj wdisj 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-cleq 2727 df-clel 2814 df-ral 3060 df-rmo 3378 df-ss 3980 df-disj 5116 |
This theorem is referenced by: disjeq2dv 5120 voliun 25603 carsgclctunlem2 34301 disjeq12i 36175 mblfinlem2 37645 voliunnfl 37651 |
Copyright terms: Public domain | W3C validator |