| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 4042 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐶 ⊆ 𝐵) | |
| 2 | 1 | ralimi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| 3 | disjss2 5112 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) |
| 5 | eqimss 4041 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐵 ⊆ 𝐶) | |
| 6 | 5 | ralimi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 7 | disjss2 5112 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
| 9 | 4, 8 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∀wral 3060 ⊆ wss 3950 Disj wdisj 5109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-cleq 2728 df-clel 2815 df-ral 3061 df-rmo 3379 df-ss 3967 df-disj 5110 |
| This theorem is referenced by: disjeq2dv 5114 voliun 25590 carsgclctunlem2 34322 disjeq12i 36195 mblfinlem2 37666 voliunnfl 37672 |
| Copyright terms: Public domain | W3C validator |