![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnfc1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of drnfc1 2921 as of 22-Sep-2024. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-11 2153. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
drnfc1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
drnfc1OLD | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnfc1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2818 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) |
3 | 2 | drnf1 2441 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ 𝐴 ↔ Ⅎ𝑦 𝑤 ∈ 𝐵)) |
4 | 3 | albidv 1922 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑥 𝑤 ∈ 𝐴 ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ 𝐵)) |
5 | df-nfc 2884 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑤Ⅎ𝑥 𝑤 ∈ 𝐴) | |
6 | df-nfc 2884 | . 2 ⊢ (Ⅎ𝑦𝐵 ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-13 2370 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2809 df-nfc 2884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |