MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnfc1OLD Structured version   Visualization version   GIF version

Theorem drnfc1OLD 2927
Description: Obsolete version of drnfc1 2926 as of 22-Sep-2024. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-11 2154. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc1OLD (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))

Proof of Theorem drnfc1OLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2824 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf1 2443 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤𝐴 ↔ Ⅎ𝑦 𝑤𝐵))
43albidv 1923 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤𝐴 ↔ ∀𝑤𝑦 𝑤𝐵))
5 df-nfc 2889 . 2 (𝑥𝐴 ↔ ∀𝑤𝑥 𝑤𝐴)
6 df-nfc 2889 . 2 (𝑦𝐵 ↔ ∀𝑤𝑦 𝑤𝐵)
74, 5, 63bitr4g 314 1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator