![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnfc2 | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Proof revision is marked as discouraged because the minimizer replaces albidv 1918 with dral2 2441, leading to a one byte longer proof. However feel free to manually edit it according to conventions. (TODO: dral2 2441 depends on ax-13 2375, hence its usage during minimizing is discouraged. Check in the long run whether this is a permanent restriction). Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-8 2108. (Revised by Wolf Lammen, 22-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
drnfc1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
drnfc2 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnfc1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | eleq2w2 2731 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) |
4 | 3 | drnf2 2447 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ Ⅎ𝑧 𝑤 ∈ 𝐵)) |
5 | 4 | albidv 1918 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵)) |
6 | df-nfc 2890 | . 2 ⊢ (Ⅎ𝑧𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴) | |
7 | df-nfc 2890 | . 2 ⊢ (Ⅎ𝑧𝐵 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-cleq 2727 df-nfc 2890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |