Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drnfc1 | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-8 2107, ax-11 2153. (Revised by Wolf Lammen, 22-Sep-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
drnfc1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
drnfc1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnfc1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | eleq2w2 2733 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) |
4 | 3 | drnf1 2442 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ 𝐴 ↔ Ⅎ𝑦 𝑤 ∈ 𝐵)) |
5 | 4 | albidv 1922 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑥 𝑤 ∈ 𝐴 ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ 𝐵)) |
6 | df-nfc 2887 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑤Ⅎ𝑥 𝑤 ∈ 𝐴) | |
7 | df-nfc 2887 | . 2 ⊢ (Ⅎ𝑦𝐵 ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ 𝐵) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-10 2136 ax-12 2170 ax-13 2371 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-nf 1785 df-cleq 2729 df-nfc 2887 |
This theorem is referenced by: nfabd2 2931 nfcvb 5314 nfriotad 7284 bj-nfcsym 35141 |
Copyright terms: Public domain | W3C validator |