MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnfc1 Structured version   Visualization version   GIF version

Theorem drnfc1 2925
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-8 2110, ax-11 2156. (Revised by Wolf Lammen, 22-Sep-2024.) (New usage is discouraged.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))

Proof of Theorem drnfc1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
2 eleq2w2 2734 . . . . 5 (𝐴 = 𝐵 → (𝑤𝐴𝑤𝐵))
31, 2syl 17 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
43drnf1 2443 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤𝐴 ↔ Ⅎ𝑦 𝑤𝐵))
54albidv 1924 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤𝐴 ↔ ∀𝑤𝑦 𝑤𝐵))
6 df-nfc 2888 . 2 (𝑥𝐴 ↔ ∀𝑤𝑥 𝑤𝐴)
7 df-nfc 2888 . 2 (𝑦𝐵 ↔ ∀𝑤𝑦 𝑤𝐵)
85, 6, 73bitr4g 313 1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-cleq 2730  df-nfc 2888
This theorem is referenced by:  nfabd2  2932  nfcvb  5294  nfriotad  7224  bj-nfcsym  35011
  Copyright terms: Public domain W3C validator