| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drnfc1 | Structured version Visualization version GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-8 2113, ax-11 2160. (Revised by Wolf Lammen, 22-Sep-2024.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| drnfc1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| drnfc1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnfc1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 2 | eleq2w2 2727 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) |
| 4 | 3 | drnf1 2443 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤 ∈ 𝐴 ↔ Ⅎ𝑦 𝑤 ∈ 𝐵)) |
| 5 | 4 | albidv 1921 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑥 𝑤 ∈ 𝐴 ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ 𝐵)) |
| 6 | df-nfc 2881 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑤Ⅎ𝑥 𝑤 ∈ 𝐴) | |
| 7 | df-nfc 2881 | . 2 ⊢ (Ⅎ𝑦𝐵 ↔ ∀𝑤Ⅎ𝑦 𝑤 ∈ 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑦𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-12 2180 ax-13 2372 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-cleq 2723 df-nfc 2881 |
| This theorem is referenced by: nfabd2 2918 nfcvb 5314 nfriotad 7314 bj-nfcsym 36932 |
| Copyright terms: Public domain | W3C validator |