MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnfc1 Structured version   Visualization version   GIF version

Theorem drnfc1 2949
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-11 2093. (Revised by Wolf Lammen, 10-May-2023.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))

Proof of Theorem drnfc1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2851 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf1 2379 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤𝐴 ↔ Ⅎ𝑦 𝑤𝐵))
43albidv 1879 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤𝐴 ↔ ∀𝑤𝑦 𝑤𝐵))
5 df-nfc 2918 . 2 (𝑥𝐴 ↔ ∀𝑤𝑥 𝑤𝐴)
6 df-nfc 2918 . 2 (𝑦𝐵 ↔ ∀𝑤𝑦 𝑤𝐵)
74, 5, 63bitr4g 306 1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1505   = wceq 1507  wnf 1746  wcel 2050  wnfc 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-12 2106  ax-13 2301  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747  df-cleq 2771  df-clel 2846  df-nfc 2918
This theorem is referenced by:  nfabd2  2953  nfabd2OLD  2954  nfcvb  5131  nfriotad  6947  bj-nfcsym  33707
  Copyright terms: Public domain W3C validator