MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnfc2OLD Structured version   Visualization version   GIF version

Theorem drnfc2OLD 2931
Description: Obsolete version of drnfc2 2930 as of 22-Sep-2024. (Contributed by Mario Carneiro, 8-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc2OLD (∀𝑥 𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))

Proof of Theorem drnfc2OLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2830 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf2 2452 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧 𝑤𝐴 ↔ Ⅎ𝑧 𝑤𝐵))
43albidv 1919 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑧 𝑤𝐴 ↔ ∀𝑤𝑧 𝑤𝐵))
5 df-nfc 2895 . 2 (𝑧𝐴 ↔ ∀𝑤𝑧 𝑤𝐴)
6 df-nfc 2895 . 2 (𝑧𝐵 ↔ ∀𝑤𝑧 𝑤𝐵)
74, 5, 63bitr4g 314 1 (∀𝑥 𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator