MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnfc2OLD Structured version   Visualization version   GIF version

Theorem drnfc2OLD 2928
Description: Obsolete version of drnfc2 2927 as of 22-Sep-2024. (Contributed by Mario Carneiro, 8-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc2OLD (∀𝑥 𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))

Proof of Theorem drnfc2OLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2824 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf2 2444 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧 𝑤𝐴 ↔ Ⅎ𝑧 𝑤𝐵))
43albidv 1924 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑧 𝑤𝐴 ↔ ∀𝑤𝑧 𝑤𝐵))
5 df-nfc 2888 . 2 (𝑧𝐴 ↔ ∀𝑤𝑧 𝑤𝐴)
6 df-nfc 2888 . 2 (𝑧𝐵 ↔ ∀𝑤𝑧 𝑤𝐵)
74, 5, 63bitr4g 313 1 (∀𝑥 𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-cleq 2730  df-clel 2817  df-nfc 2888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator