MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfabdw Structured version   Visualization version   GIF version

Theorem nfabdw 2927
Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2928 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-13 2377. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Sep-2024.)
Hypotheses
Ref Expression
nfabdw.1 𝑦𝜑
nfabdw.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfabdw (𝜑𝑥{𝑦𝜓})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem nfabdw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑧𝜑
2 df-clab 2715 . . . 4 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
3 sb6 2085 . . . 4 ([𝑧 / 𝑦]𝜓 ↔ ∀𝑦(𝑦 = 𝑧𝜓))
42, 3bitri 275 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ ∀𝑦(𝑦 = 𝑧𝜓))
5 nfabdw.1 . . . 4 𝑦𝜑
6 nfvd 1915 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦 = 𝑧)
7 nfabdw.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
86, 7nfimd 1894 . . . 4 (𝜑 → Ⅎ𝑥(𝑦 = 𝑧𝜓))
95, 8nfald 2328 . . 3 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝑧𝜓))
104, 9nfxfrd 1854 . 2 (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦𝜓})
111, 10nfcd 2898 1 (𝜑𝑥{𝑦𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wnf 1783  [wsb 2064  wcel 2108  {cab 2714  wnfc 2890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-nfc 2892
This theorem is referenced by:  nfrabw  3475  nfrabwOLD  3476  nfsbcdw  3809  nfcsb1d  3921  nfcsbw  3925  nfifd  4555  nfunid  4913  nfopabd  5211  nfiotadw  6517  nfintd  49192  nfiund  49193
  Copyright terms: Public domain W3C validator