MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfabdw Structured version   Visualization version   GIF version

Theorem nfabdw 2923
Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2925 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-13 2366. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Sep-2024.)
Hypotheses
Ref Expression
nfabdw.1 𝑦𝜑
nfabdw.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfabdw (𝜑𝑥{𝑦𝜓})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem nfabdw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . 2 𝑧𝜑
2 df-clab 2706 . . . 4 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
3 sb6 2080 . . . 4 ([𝑧 / 𝑦]𝜓 ↔ ∀𝑦(𝑦 = 𝑧𝜓))
42, 3bitri 274 . . 3 (𝑧 ∈ {𝑦𝜓} ↔ ∀𝑦(𝑦 = 𝑧𝜓))
5 nfabdw.1 . . . 4 𝑦𝜑
6 nfvd 1910 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦 = 𝑧)
7 nfabdw.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
86, 7nfimd 1889 . . . 4 (𝜑 → Ⅎ𝑥(𝑦 = 𝑧𝜓))
95, 8nfald 2316 . . 3 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝑧𝜓))
104, 9nfxfrd 1848 . 2 (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦𝜓})
111, 10nfcd 2887 1 (𝜑𝑥{𝑦𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wnf 1777  [wsb 2059  wcel 2098  {cab 2705  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-nfc 2881
This theorem is referenced by:  nfrabw  3467  nfrabwOLD  3468  nfsbcdw  3799  nfcsb1d  3917  nfcsbw  3921  nfifd  4561  nfunid  4918  nfopabd  5220  nfiotadw  6508  nfintd  48182  nfiund  48183
  Copyright terms: Public domain W3C validator