Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfabdw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2932 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Sep-2024.) |
Ref | Expression |
---|---|
nfabdw.1 | ⊢ Ⅎ𝑦𝜑 |
nfabdw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfabdw | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | df-clab 2716 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
3 | sb6 2088 | . . . 4 ⊢ ([𝑧 / 𝑦]𝜓 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜓)) | |
4 | 2, 3 | bitri 274 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ ∀𝑦(𝑦 = 𝑧 → 𝜓)) |
5 | nfabdw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
6 | nfvd 1918 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
7 | nfabdw.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
8 | 6, 7 | nfimd 1897 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝑧 → 𝜓)) |
9 | 5, 8 | nfald 2322 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 = 𝑧 → 𝜓)) |
10 | 4, 9 | nfxfrd 1856 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
11 | 1, 10 | nfcd 2895 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1786 [wsb 2067 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-nfc 2889 |
This theorem is referenced by: nfrabw 3318 nfrabwOLD 3319 nfsbcdw 3737 nfcsb1d 3855 nfcsbw 3859 nfifd 4488 nfunid 4845 nfopabd 5142 nfiotadw 6394 nfintd 46379 nfiund 46380 |
Copyright terms: Public domain | W3C validator |