| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfabdw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2917 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nfabdw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfabdw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfabdw | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | df-clab 2710 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 3 | sb6 2088 | . . . 4 ⊢ ([𝑧 / 𝑦]𝜓 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜓)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ ∀𝑦(𝑦 = 𝑧 → 𝜓)) |
| 5 | nfabdw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 6 | nfvd 1916 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
| 7 | nfabdw.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 8 | 6, 7 | nfimd 1895 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝑧 → 𝜓)) |
| 9 | 5, 8 | nfald 2329 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 = 𝑧 → 𝜓)) |
| 10 | 4, 9 | nfxfrd 1855 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 11 | 1, 10 | nfcd 2887 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 [wsb 2067 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-nfc 2881 |
| This theorem is referenced by: nfrabw 3432 nfsbcdw 3757 nfcsb1d 3867 nfcsbw 3871 nfifd 4502 nfunid 4862 nfopabd 5157 nfiotadw 6440 nfchnd 18517 nfintd 49784 nfiund 49785 |
| Copyright terms: Public domain | W3C validator |