Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALTlem1VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of onfrALTlem1 41747.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem1 41747 is onfrALTlem1VD 42089 without virtual deductions and was
automatically derived from onfrALTlem1VD 42089.
|
Ref | Expression |
---|---|
onfrALTlem1VD | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn2 41812 | . . . . 5 ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ) | |
2 | 19.8a 2182 | . . . . 5 ⊢ ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)) | |
3 | 1, 2 | e2 41830 | . . . 4 ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ) |
4 | cbvexsv 41746 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)) | |
5 | 4 | biimpi 219 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)) |
6 | 3, 5 | e2 41830 | . . 3 ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ) |
7 | sbsbc 3689 | . . . . . 6 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ [𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)) | |
8 | onfrALTlem4 41742 | . . . . . 6 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) | |
9 | 7, 8 | bitri 278 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
10 | 9 | ax-gen 1802 | . . . 4 ⊢ ∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
11 | exbi 1853 | . . . 4 ⊢ (∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) → (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))) | |
12 | 10, 11 | e0a 41971 | . . 3 ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
13 | 6, 12 | e2bi 41831 | . 2 ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) ) |
14 | df-rex 3060 | . 2 ⊢ (∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) | |
15 | 13, 14 | e2bir 41832 | 1 ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∀wal 1540 = wceq 1542 ∃wex 1786 [wsb 2074 ∈ wcel 2114 ≠ wne 2935 ∃wrex 3055 [wsbc 3685 ∩ cin 3852 ⊆ wss 3853 ∅c0 4221 Oncon0 6183 ( wvd2 41776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-13 2373 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-in 3860 df-nul 4222 df-vd2 41777 |
This theorem is referenced by: onfrALTVD 42090 |
Copyright terms: Public domain | W3C validator |