Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem1VD Structured version   Visualization version   GIF version

Theorem onfrALTlem1VD 44106
Description: Virtual deduction proof of onfrALTlem1 43764. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 43764 is onfrALTlem1VD 44106 without virtual deductions and was automatically derived from onfrALTlem1VD 44106.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅)    )
4:: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅ ) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
5:4: 𝑦([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
6:5: (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
7:3,6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
8:: (∃𝑦𝑎(𝑎𝑦) = ∅ ↔ ∃𝑦( 𝑦𝑎 ∧ (𝑎𝑦) = ∅))
qed:7,8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem1VD (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Distinct variable group:   𝑥,𝑎,𝑦

Proof of Theorem onfrALTlem1VD
StepHypRef Expression
1 idn2 43829 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
2 19.8a 2166 . . . . 5 ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅))
31, 2e2 43847 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
4 cbvexsv 43763 . . . . 5 (∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅))
54biimpi 215 . . . 4 (∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅))
63, 5e2 43847 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
7 sbsbc 3773 . . . . . 6 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ [𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅))
8 onfrALTlem4 43759 . . . . . 6 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
97, 8bitri 275 . . . . 5 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
109ax-gen 1789 . . . 4 𝑦([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
11 exbi 1841 . . . 4 (∀𝑦([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅)) → (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
1210, 11e0a 43988 . . 3 (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
136, 12e2bi 43848 . 2 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
14 df-rex 3063 . 2 (∃𝑦𝑎 (𝑎𝑦) = ∅ ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
1513, 14e2bir 43849 1 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1531   = wceq 1533  wex 1773  [wsb 2059  wcel 2098  wne 2932  wrex 3062  [wsbc 3769  cin 3939  wss 3940  c0 4314  Oncon0 6354  (   wvd2 43793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2363  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-in 3947  df-nul 4315  df-vd2 43794
This theorem is referenced by:  onfrALTVD  44107
  Copyright terms: Public domain W3C validator