Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpid3gVD Structured version   Visualization version   GIF version

Theorem tpid3gVD 44933
Description: Virtual deduction proof of tpid3g 4722. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tpid3gVD (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3gVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idn2 44705 . . . . . . 7 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝑥 = 𝐴   )
2 3mix3 1333 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
31, 2e2 44723 . . . . . . . . 9 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)   )
4 abid 2713 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)} ↔ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
53, 4e2bir 44725 . . . . . . . 8 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}   )
6 dftp2 4641 . . . . . . . . 9 {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}
76eleq2i 2823 . . . . . . . 8 (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)})
85, 7e2bir 44725 . . . . . . 7 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝑥 ∈ {𝐶, 𝐷, 𝐴}   )
9 eleq1 2819 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴}))
109biimpd 229 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} → 𝐴 ∈ {𝐶, 𝐷, 𝐴}))
111, 8, 10e22 44763 . . . . . 6 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝐴 ∈ {𝐶, 𝐷, 𝐴}   )
1211in2 44697 . . . . 5 (   𝐴𝐵   ▶   (𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴})   )
1312gen11 44708 . . . 4 (   𝐴𝐵   ▶   𝑥(𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴})   )
14 19.23v 1943 . . . 4 (∀𝑥(𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}) ↔ (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
1513, 14e1bi 44721 . . 3 (   𝐴𝐵   ▶   (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴})   )
16 idn1 44666 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
17 elisset 2813 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
1816, 17e1a 44719 . . 3 (   𝐴𝐵   ▶   𝑥 𝑥 = 𝐴   )
19 id 22 . . 3 ((∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}) → (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
2015, 18, 19e11 44780 . 2 (   𝐴𝐵   ▶   𝐴 ∈ {𝐶, 𝐷, 𝐴}   )
2120in1 44663 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  {ctp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576  df-tp 4578  df-vd1 44662  df-vd2 44670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator