Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpid3gVD Structured version   Visualization version   GIF version

Theorem tpid3gVD 42135
Description: Virtual deduction proof of tpid3g 4688. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tpid3gVD (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})

Proof of Theorem tpid3gVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idn2 41906 . . . . . . 7 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝑥 = 𝐴   )
2 3mix3 1334 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
31, 2e2 41924 . . . . . . . . 9 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)   )
4 abid 2718 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)} ↔ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴))
53, 4e2bir 41926 . . . . . . . 8 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}   )
6 dftp2 4605 . . . . . . . . 9 {𝐶, 𝐷, 𝐴} = {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)}
76eleq2i 2829 . . . . . . . 8 (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝑥 ∈ {𝑥 ∣ (𝑥 = 𝐶𝑥 = 𝐷𝑥 = 𝐴)})
85, 7e2bir 41926 . . . . . . 7 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝑥 ∈ {𝐶, 𝐷, 𝐴}   )
9 eleq1 2825 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} ↔ 𝐴 ∈ {𝐶, 𝐷, 𝐴}))
109biimpd 232 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ {𝐶, 𝐷, 𝐴} → 𝐴 ∈ {𝐶, 𝐷, 𝐴}))
111, 8, 10e22 41964 . . . . . 6 (   𝐴𝐵   ,   𝑥 = 𝐴   ▶   𝐴 ∈ {𝐶, 𝐷, 𝐴}   )
1211in2 41898 . . . . 5 (   𝐴𝐵   ▶   (𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴})   )
1312gen11 41909 . . . 4 (   𝐴𝐵   ▶   𝑥(𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴})   )
14 19.23v 1950 . . . 4 (∀𝑥(𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}) ↔ (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
1513, 14e1bi 41922 . . 3 (   𝐴𝐵   ▶   (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴})   )
16 idn1 41867 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
17 elisset 2819 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
1816, 17e1a 41920 . . 3 (   𝐴𝐵   ▶   𝑥 𝑥 = 𝐴   )
19 id 22 . . 3 ((∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}) → (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝐶, 𝐷, 𝐴}))
2015, 18, 19e11 41981 . 2 (   𝐴𝐵   ▶   𝐴 ∈ {𝐶, 𝐷, 𝐴}   )
2120in1 41864 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1088  wal 1541   = wceq 1543  wex 1787  wcel 2110  {cab 2714  {ctp 4545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871  df-sn 4542  df-pr 4544  df-tp 4546  df-vd1 41863  df-vd2 41871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator