Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ectocl | Structured version Visualization version GIF version |
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ectocl.3 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
ectocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
3 | ectocl.2 | . . 3 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | ectocl.3 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 4 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝜑) |
6 | 2, 3, 5 | ectocld 8573 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ 𝑆) → 𝜓) |
7 | 1, 6 | mpan 687 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 [cec 8496 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-qs 8504 |
This theorem is referenced by: vitalilem2 24773 |
Copyright terms: Public domain | W3C validator |