MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ectocl Structured version   Visualization version   GIF version

Theorem ectocl 8574
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocl.3 (𝑥𝐵𝜑)
Assertion
Ref Expression
ectocl (𝐴𝑆𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocl
StepHypRef Expression
1 tru 1543 . 2
2 ectocl.1 . . 3 𝑆 = (𝐵 / 𝑅)
3 ectocl.2 . . 3 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
4 ectocl.3 . . . 4 (𝑥𝐵𝜑)
54adantl 482 . . 3 ((⊤ ∧ 𝑥𝐵) → 𝜑)
62, 3, 5ectocld 8573 . 2 ((⊤ ∧ 𝐴𝑆) → 𝜓)
71, 6mpan 687 1 (𝐴𝑆𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wtru 1540  wcel 2106  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-qs 8504
This theorem is referenced by:  vitalilem2  24773
  Copyright terms: Public domain W3C validator