| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ectocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
| ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ectocl.3 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| ectocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1543 | . 2 ⊢ ⊤ | |
| 2 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
| 3 | ectocl.2 | . . 3 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | ectocl.3 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| 6 | 2, 3, 5 | ectocld 8806 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| 7 | 1, 6 | mpan 690 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 [cec 8725 / cqs 8726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-qs 8733 |
| This theorem is referenced by: vitalilem2 25580 |
| Copyright terms: Public domain | W3C validator |