MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsn0 Structured version   Visualization version   GIF version

Theorem elqsn0 8844
Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)

Proof of Theorem elqsn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 neeq1 3009 . 2 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 eleq2 2833 . . . 4 (dom 𝑅 = 𝐴 → (𝑥 ∈ dom 𝑅𝑥𝐴))
43biimpar 477 . . 3 ((dom 𝑅 = 𝐴𝑥𝐴) → 𝑥 ∈ dom 𝑅)
5 ecdmn0 8812 . . 3 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
64, 5sylib 218 . 2 ((dom 𝑅 = 𝐴𝑥𝐴) → [𝑥]𝑅 ≠ ∅)
71, 2, 6ectocld 8842 1 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  c0 4352  dom cdm 5700  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769
This theorem is referenced by:  ecelqsdm  8845  0nsr  11148  sylow1lem3  19642  vitalilem5  25666  prtlem400  38826  prjspnn0  42577
  Copyright terms: Public domain W3C validator