MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsn0 Structured version   Visualization version   GIF version

Theorem elqsn0 8708
Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)

Proof of Theorem elqsn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 neeq1 2990 . 2 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 eleq2 2820 . . . 4 (dom 𝑅 = 𝐴 → (𝑥 ∈ dom 𝑅𝑥𝐴))
43biimpar 477 . . 3 ((dom 𝑅 = 𝐴𝑥𝐴) → 𝑥 ∈ dom 𝑅)
5 ecdmn0 8674 . . 3 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
64, 5sylib 218 . 2 ((dom 𝑅 = 𝐴𝑥𝐴) → [𝑥]𝑅 ≠ ∅)
71, 2, 6ectocld 8706 1 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  c0 4280  dom cdm 5614  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628
This theorem is referenced by:  ecelqsdm  8709  0nsr  10970  sylow1lem3  19512  vitalilem5  25540  prtlem400  38917  prjspnn0  42663
  Copyright terms: Public domain W3C validator