| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqsn0 | Structured version Visualization version GIF version | ||
| Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| elqsn0 | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
| 2 | neeq1 2987 | . 2 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 3 | eleq2 2817 | . . . 4 ⊢ (dom 𝑅 = 𝐴 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | 3 | biimpar 477 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝑅) |
| 5 | ecdmn0 8723 | . . 3 ⊢ (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 ≠ ∅) |
| 7 | 1, 2, 6 | ectocld 8755 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 dom cdm 5638 [cec 8669 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: ecelqsdm 8758 0nsr 11032 sylow1lem3 19530 vitalilem5 25513 prtlem400 38863 prjspnn0 42610 |
| Copyright terms: Public domain | W3C validator |