MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsn0 Structured version   Visualization version   GIF version

Theorem elqsn0 8734
Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)

Proof of Theorem elqsn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 neeq1 2987 . 2 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 eleq2 2817 . . . 4 (dom 𝑅 = 𝐴 → (𝑥 ∈ dom 𝑅𝑥𝐴))
43biimpar 477 . . 3 ((dom 𝑅 = 𝐴𝑥𝐴) → 𝑥 ∈ dom 𝑅)
5 ecdmn0 8700 . . 3 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
64, 5sylib 218 . 2 ((dom 𝑅 = 𝐴𝑥𝐴) → [𝑥]𝑅 ≠ ∅)
71, 2, 6ectocld 8732 1 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4292  dom cdm 5631  [cec 8646   / cqs 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654
This theorem is referenced by:  ecelqsdm  8735  0nsr  11008  sylow1lem3  19514  vitalilem5  25546  prtlem400  38856  prjspnn0  42603
  Copyright terms: Public domain W3C validator