![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqsn0 | Structured version Visualization version GIF version |
Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
elqsn0 | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | neeq1 3003 | . 2 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | eleq2 2822 | . . . 4 ⊢ (dom 𝑅 = 𝐴 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) | |
4 | 3 | biimpar 478 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝑅) |
5 | ecdmn0 8749 | . . 3 ⊢ (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 ≠ ∅) |
7 | 1, 2, 6 | ectocld 8777 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 dom cdm 5676 [cec 8700 / cqs 8701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8704 df-qs 8708 |
This theorem is referenced by: ecelqsdm 8780 0nsr 11073 sylow1lem3 19467 vitalilem5 25128 prtlem400 37735 prjspnn0 41365 |
Copyright terms: Public domain | W3C validator |