![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqsn0 | Structured version Visualization version GIF version |
Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
elqsn0 | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . 2 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | neeq1 2992 | . 2 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | eleq2 2814 | . . . 4 ⊢ (dom 𝑅 = 𝐴 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) | |
4 | 3 | biimpar 476 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝑅) |
5 | ecdmn0 8773 | . . 3 ⊢ (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 ≠ ∅) |
7 | 1, 2, 6 | ectocld 8803 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∅c0 4322 dom cdm 5678 [cec 8723 / cqs 8724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8727 df-qs 8731 |
This theorem is referenced by: ecelqsdm 8806 0nsr 11104 sylow1lem3 19567 vitalilem5 25585 prtlem400 38469 prjspnn0 42178 |
Copyright terms: Public domain | W3C validator |