MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem2 Structured version   Visualization version   GIF version

Theorem vitalilem2 24773
Description: Lemma for vitali 24777. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem2 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
Distinct variable groups:   𝑚,𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑚,𝑛,𝑥,𝑧   𝑧,𝑆   𝑇,𝑚,𝑥   𝑚,𝐹,𝑛,𝑠,𝑥,𝑦,𝑧   ,𝑚,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑚,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.3 . . . 4 (𝜑𝐹 Fn 𝑆)
2 vitali.4 . . . . 5 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
3 vitali.2 . . . . . . . . 9 𝑆 = ((0[,]1) / )
4 neeq1 3006 . . . . . . . . 9 ([𝑣] = 𝑧 → ([𝑣] ≠ ∅ ↔ 𝑧 ≠ ∅))
5 vitali.1 . . . . . . . . . . . . . 14 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
65vitalilem1 24772 . . . . . . . . . . . . 13 Er (0[,]1)
7 erdm 8508 . . . . . . . . . . . . 13 ( Er (0[,]1) → dom = (0[,]1))
86, 7ax-mp 5 . . . . . . . . . . . 12 dom = (0[,]1)
98eleq2i 2830 . . . . . . . . . . 11 (𝑣 ∈ dom 𝑣 ∈ (0[,]1))
10 ecdmn0 8545 . . . . . . . . . . 11 (𝑣 ∈ dom ↔ [𝑣] ≠ ∅)
119, 10bitr3i 276 . . . . . . . . . 10 (𝑣 ∈ (0[,]1) ↔ [𝑣] ≠ ∅)
1211biimpi 215 . . . . . . . . 9 (𝑣 ∈ (0[,]1) → [𝑣] ≠ ∅)
133, 4, 12ectocl 8574 . . . . . . . 8 (𝑧𝑆𝑧 ≠ ∅)
1413adantl 482 . . . . . . 7 ((𝜑𝑧𝑆) → 𝑧 ≠ ∅)
15 sseq1 3946 . . . . . . . . . 10 ([𝑤] = 𝑧 → ([𝑤] ⊆ (0[,]1) ↔ 𝑧 ⊆ (0[,]1)))
166a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (0[,]1) → Er (0[,]1))
1716ecss 8544 . . . . . . . . . 10 (𝑤 ∈ (0[,]1) → [𝑤] ⊆ (0[,]1))
183, 15, 17ectocl 8574 . . . . . . . . 9 (𝑧𝑆𝑧 ⊆ (0[,]1))
1918adantl 482 . . . . . . . 8 ((𝜑𝑧𝑆) → 𝑧 ⊆ (0[,]1))
2019sseld 3920 . . . . . . 7 ((𝜑𝑧𝑆) → ((𝐹𝑧) ∈ 𝑧 → (𝐹𝑧) ∈ (0[,]1)))
2114, 20embantd 59 . . . . . 6 ((𝜑𝑧𝑆) → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → (𝐹𝑧) ∈ (0[,]1)))
2221ralimdva 3108 . . . . 5 (𝜑 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
232, 22mpd 15 . . . 4 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1))
24 ffnfv 6992 . . . 4 (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
251, 23, 24sylanbrc 583 . . 3 (𝜑𝐹:𝑆⟶(0[,]1))
2625frnd 6608 . 2 (𝜑 → ran 𝐹 ⊆ (0[,]1))
27 vitali.5 . . . . . . . 8 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
2827adantr 481 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
29 f1ocnv 6728 . . . . . . 7 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ)
30 f1of 6716 . . . . . . 7 (𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ → 𝐺:(ℚ ∩ (-1[,]1))⟶ℕ)
3128, 29, 303syl 18 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → 𝐺:(ℚ ∩ (-1[,]1))⟶ℕ)
32 simpr 485 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1))
3332, 11sylib 217 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] ≠ ∅)
34 neeq1 3006 . . . . . . . . . . . 12 (𝑧 = [𝑣] → (𝑧 ≠ ∅ ↔ [𝑣] ≠ ∅))
35 fveq2 6774 . . . . . . . . . . . . 13 (𝑧 = [𝑣] → (𝐹𝑧) = (𝐹‘[𝑣] ))
36 id 22 . . . . . . . . . . . . 13 (𝑧 = [𝑣] 𝑧 = [𝑣] )
3735, 36eleq12d 2833 . . . . . . . . . . . 12 (𝑧 = [𝑣] → ((𝐹𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ) ∈ [𝑣] ))
3834, 37imbi12d 345 . . . . . . . . . . 11 (𝑧 = [𝑣] → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) ↔ ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] )))
392adantr 481 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
40 ovex 7308 . . . . . . . . . . . . . . 15 (0[,]1) ∈ V
41 erex 8522 . . . . . . . . . . . . . . 15 ( Er (0[,]1) → ((0[,]1) ∈ V → ∈ V))
426, 40, 41mp2 9 . . . . . . . . . . . . . 14 ∈ V
4342ecelqsi 8562 . . . . . . . . . . . . 13 (𝑣 ∈ (0[,]1) → [𝑣] ∈ ((0[,]1) / ))
4443adantl 482 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] ∈ ((0[,]1) / ))
4544, 3eleqtrrdi 2850 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] 𝑆)
4638, 39, 45rspcdva 3562 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] ))
4733, 46mpd 15 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ [𝑣] )
48 fvex 6787 . . . . . . . . . . 11 (𝐹‘[𝑣] ) ∈ V
49 vex 3436 . . . . . . . . . . 11 𝑣 ∈ V
5048, 49elec 8542 . . . . . . . . . 10 ((𝐹‘[𝑣] ) ∈ [𝑣] 𝑣 (𝐹‘[𝑣] ))
51 oveq12 7284 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = (𝐹‘[𝑣] )) → (𝑥𝑦) = (𝑣 − (𝐹‘[𝑣] )))
5251eleq1d 2823 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = (𝐹‘[𝑣] )) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5352, 5brab2a 5680 . . . . . . . . . 10 (𝑣 (𝐹‘[𝑣] ) ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5450, 53bitri 274 . . . . . . . . 9 ((𝐹‘[𝑣] ) ∈ [𝑣] ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5547, 54sylib 217 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5655simprd 496 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ)
57 elicc01 13198 . . . . . . . . . . 11 (𝑣 ∈ (0[,]1) ↔ (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣𝑣 ≤ 1))
5832, 57sylib 217 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣𝑣 ≤ 1))
5958simp1d 1141 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℝ)
6055simpld 495 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)))
6160simprd 496 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ (0[,]1))
62 elicc01 13198 . . . . . . . . . . 11 ((𝐹‘[𝑣] ) ∈ (0[,]1) ↔ ((𝐹‘[𝑣] ) ∈ ℝ ∧ 0 ≤ (𝐹‘[𝑣] ) ∧ (𝐹‘[𝑣] ) ≤ 1))
6361, 62sylib 217 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) ∈ ℝ ∧ 0 ≤ (𝐹‘[𝑣] ) ∧ (𝐹‘[𝑣] ) ≤ 1))
6463simp1d 1141 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ℝ)
6559, 64resubcld 11403 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ ℝ)
6664, 59resubcld 11403 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ∈ ℝ)
67 1red 10976 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → 1 ∈ ℝ)
6858simp2d 1142 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → 0 ≤ 𝑣)
6964, 59subge02d 11567 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → (0 ≤ 𝑣 ↔ ((𝐹‘[𝑣] ) − 𝑣) ≤ (𝐹‘[𝑣] )))
7068, 69mpbid 231 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ≤ (𝐹‘[𝑣] ))
7163simp3d 1143 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ≤ 1)
7266, 64, 67, 70, 71letrd 11132 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ≤ 1)
7366, 67lenegd 11554 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (((𝐹‘[𝑣] ) − 𝑣) ≤ 1 ↔ -1 ≤ -((𝐹‘[𝑣] ) − 𝑣)))
7472, 73mpbid 231 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → -1 ≤ -((𝐹‘[𝑣] ) − 𝑣))
7564recnd 11003 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ℂ)
7659recnd 11003 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℂ)
7775, 76negsubdi2d 11348 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → -((𝐹‘[𝑣] ) − 𝑣) = (𝑣 − (𝐹‘[𝑣] )))
7874, 77breqtrd 5100 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → -1 ≤ (𝑣 − (𝐹‘[𝑣] )))
7963simp2d 1142 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → 0 ≤ (𝐹‘[𝑣] ))
8059, 64subge02d 11567 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (0 ≤ (𝐹‘[𝑣] ) ↔ (𝑣 − (𝐹‘[𝑣] )) ≤ 𝑣))
8179, 80mpbid 231 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ≤ 𝑣)
8258simp3d 1143 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ≤ 1)
8365, 59, 67, 81, 82letrd 11132 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ≤ 1)
84 neg1rr 12088 . . . . . . . . 9 -1 ∈ ℝ
85 1re 10975 . . . . . . . . 9 1 ∈ ℝ
8684, 85elicc2i 13145 . . . . . . . 8 ((𝑣 − (𝐹‘[𝑣] )) ∈ (-1[,]1) ↔ ((𝑣 − (𝐹‘[𝑣] )) ∈ ℝ ∧ -1 ≤ (𝑣 − (𝐹‘[𝑣] )) ∧ (𝑣 − (𝐹‘[𝑣] )) ≤ 1))
8765, 78, 83, 86syl3anbrc 1342 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ (-1[,]1))
8856, 87elind 4128 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ (ℚ ∩ (-1[,]1)))
8931, 88ffvelrnd 6962 . . . . 5 ((𝜑𝑣 ∈ (0[,]1)) → (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ)
90 oveq1 7282 . . . . . . . 8 (𝑠 = 𝑣 → (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))))
9190eleq1d 2823 . . . . . . 7 (𝑠 = 𝑣 → ((𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹 ↔ (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹))
92 f1ocnvfv2 7149 . . . . . . . . . . 11 ((𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ (ℚ ∩ (-1[,]1))) → (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = (𝑣 − (𝐹‘[𝑣] )))
9327, 88, 92syl2an2r 682 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = (𝑣 − (𝐹‘[𝑣] )))
9493oveq2d 7291 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝑣 − (𝑣 − (𝐹‘[𝑣] ))))
9576, 75nncand 11337 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝑣 − (𝐹‘[𝑣] ))) = (𝐹‘[𝑣] ))
9694, 95eqtrd 2778 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝐹‘[𝑣] ))
97 fnfvelrn 6958 . . . . . . . . 9 ((𝐹 Fn 𝑆 ∧ [𝑣] 𝑆) → (𝐹‘[𝑣] ) ∈ ran 𝐹)
981, 45, 97syl2an2r 682 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ran 𝐹)
9996, 98eqeltrd 2839 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹)
10091, 59, 99elrabd 3626 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
101 fveq2 6774 . . . . . . . . . . 11 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝐺𝑛) = (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
102101oveq2d 7291 . . . . . . . . . 10 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))))
103102eleq1d 2823 . . . . . . . . 9 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹))
104103rabbidv 3414 . . . . . . . 8 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
105 vitali.6 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
106 reex 10962 . . . . . . . . 9 ℝ ∈ V
107106rabex 5256 . . . . . . . 8 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹} ∈ V
108104, 105, 107fvmpt 6875 . . . . . . 7 ((𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ → (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
10989, 108syl 17 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
110100, 109eleqtrrd 2842 . . . . 5 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
111 fveq2 6774 . . . . . 6 (𝑚 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝑇𝑚) = (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
112111eliuni 4930 . . . . 5 (((𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ ∧ 𝑣 ∈ (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚))
11389, 110, 112syl2anc 584 . . . 4 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚))
114113ex 413 . . 3 (𝜑 → (𝑣 ∈ (0[,]1) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚)))
115114ssrdv 3927 . 2 (𝜑 → (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚))
116 eliun 4928 . . . 4 (𝑥 𝑚 ∈ ℕ (𝑇𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇𝑚))
117 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
118117oveq2d 7291 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑚)))
119118eleq1d 2823 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹))
120119rabbidv 3414 . . . . . . . . . . . 12 (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
121106rabex 5256 . . . . . . . . . . . 12 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ∈ V
122120, 105, 121fvmpt 6875 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
123122adantl 482 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
124123eleq2d 2824 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ (𝑇𝑚) ↔ 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
125124biimpa 477 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
126 oveq1 7282 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠 − (𝐺𝑚)) = (𝑥 − (𝐺𝑚)))
127126eleq1d 2823 . . . . . . . . 9 (𝑠 = 𝑥 → ((𝑠 − (𝐺𝑚)) ∈ ran 𝐹 ↔ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
128127elrab 3624 . . . . . . . 8 (𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ↔ (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
129125, 128sylib 217 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
130129simpld 495 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ ℝ)
13184a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ∈ ℝ)
132 iccssre 13161 . . . . . . . . . 10 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
13384, 85, 132mp2an 689 . . . . . . . . 9 (-1[,]1) ⊆ ℝ
134 f1of 6716 . . . . . . . . . . . 12 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
13527, 134syl 17 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
136135ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (ℚ ∩ (-1[,]1)))
137136elin2d 4133 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (-1[,]1))
138133, 137sselid 3919 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
139138adantr 481 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ∈ ℝ)
140137adantr 481 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ∈ (-1[,]1))
14184, 85elicc2i 13145 . . . . . . . . 9 ((𝐺𝑚) ∈ (-1[,]1) ↔ ((𝐺𝑚) ∈ ℝ ∧ -1 ≤ (𝐺𝑚) ∧ (𝐺𝑚) ≤ 1))
142140, 141sylib 217 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) ∈ ℝ ∧ -1 ≤ (𝐺𝑚) ∧ (𝐺𝑚) ≤ 1))
143142simp2d 1142 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ≤ (𝐺𝑚))
14426ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ran 𝐹 ⊆ (0[,]1))
145129simprd 496 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ∈ ran 𝐹)
146144, 145sseldd 3922 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ∈ (0[,]1))
147 elicc01 13198 . . . . . . . . . 10 ((𝑥 − (𝐺𝑚)) ∈ (0[,]1) ↔ ((𝑥 − (𝐺𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺𝑚)) ∧ (𝑥 − (𝐺𝑚)) ≤ 1))
148146, 147sylib 217 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝑥 − (𝐺𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺𝑚)) ∧ (𝑥 − (𝐺𝑚)) ≤ 1))
149148simp2d 1142 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 0 ≤ (𝑥 − (𝐺𝑚)))
150130, 139subge0d 11565 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (0 ≤ (𝑥 − (𝐺𝑚)) ↔ (𝐺𝑚) ≤ 𝑥))
151149, 150mpbid 231 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ≤ 𝑥)
152131, 139, 130, 143, 151letrd 11132 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ≤ 𝑥)
153 peano2re 11148 . . . . . . . 8 ((𝐺𝑚) ∈ ℝ → ((𝐺𝑚) + 1) ∈ ℝ)
154139, 153syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ∈ ℝ)
155 2re 12047 . . . . . . . 8 2 ∈ ℝ
156155a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 2 ∈ ℝ)
157148simp3d 1143 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ≤ 1)
158 1red 10976 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 1 ∈ ℝ)
159130, 139, 158lesubadd2d 11574 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝑥 − (𝐺𝑚)) ≤ 1 ↔ 𝑥 ≤ ((𝐺𝑚) + 1)))
160157, 159mpbid 231 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ≤ ((𝐺𝑚) + 1))
161142simp3d 1143 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ≤ 1)
162139, 158, 158, 161leadd1dd 11589 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ≤ (1 + 1))
163 df-2 12036 . . . . . . . 8 2 = (1 + 1)
164162, 163breqtrrdi 5116 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ≤ 2)
165130, 154, 156, 160, 164letrd 11132 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ≤ 2)
16684, 155elicc2i 13145 . . . . . 6 (𝑥 ∈ (-1[,]2) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥𝑥 ≤ 2))
167130, 152, 165, 166syl3anbrc 1342 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ (-1[,]2))
168167rexlimdva2 3216 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇𝑚) → 𝑥 ∈ (-1[,]2)))
169116, 168syl5bi 241 . . 3 (𝜑 → (𝑥 𝑚 ∈ ℕ (𝑇𝑚) → 𝑥 ∈ (-1[,]2)))
170169ssrdv 3927 . 2 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
17126, 115, 1703jca 1127 1 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   ciun 4924   class class class wbr 5074  {copab 5136  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496   / cqs 8497  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  -cneg 11206  cn 11973  2c2 12028  cq 12688  [,]cicc 13082  volcvol 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-ec 8500  df-qs 8504  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-q 12689  df-icc 13086
This theorem is referenced by:  vitalilem3  24774  vitalilem4  24775  vitalilem5  24776
  Copyright terms: Public domain W3C validator