| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vitali.3 | . . . 4
⊢ (𝜑 → 𝐹 Fn 𝑆) | 
| 2 |  | vitali.4 | . . . . 5
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) | 
| 3 |  | vitali.2 | . . . . . . . . 9
⊢ 𝑆 = ((0[,]1) / ∼
) | 
| 4 |  | neeq1 3003 | . . . . . . . . 9
⊢ ([𝑣] ∼ = 𝑧 → ([𝑣] ∼ ≠ ∅ ↔
𝑧 ≠
∅)) | 
| 5 |  | vitali.1 | . . . . . . . . . . . . . 14
⊢  ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} | 
| 6 | 5 | vitalilem1 25643 | . . . . . . . . . . . . 13
⊢  ∼ Er
(0[,]1) | 
| 7 |  | erdm 8755 | . . . . . . . . . . . . 13
⊢ ( ∼ Er
(0[,]1) → dom ∼ =
(0[,]1)) | 
| 8 | 6, 7 | ax-mp 5 | . . . . . . . . . . . 12
⊢ dom ∼ =
(0[,]1) | 
| 9 | 8 | eleq2i 2833 | . . . . . . . . . . 11
⊢ (𝑣 ∈ dom ∼ ↔ 𝑣 ∈
(0[,]1)) | 
| 10 |  | ecdmn0 8794 | . . . . . . . . . . 11
⊢ (𝑣 ∈ dom ∼ ↔ [𝑣] ∼ ≠
∅) | 
| 11 | 9, 10 | bitr3i 277 | . . . . . . . . . 10
⊢ (𝑣 ∈ (0[,]1) ↔ [𝑣] ∼ ≠
∅) | 
| 12 | 11 | biimpi 216 | . . . . . . . . 9
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ≠
∅) | 
| 13 | 3, 4, 12 | ectocl 8825 | . . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → 𝑧 ≠ ∅) | 
| 14 | 13 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ≠ ∅) | 
| 15 |  | sseq1 4009 | . . . . . . . . . 10
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ (0[,]1)
↔ 𝑧 ⊆
(0[,]1))) | 
| 16 | 6 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑤 ∈ (0[,]1) → ∼ Er
(0[,]1)) | 
| 17 | 16 | ecss 8793 | . . . . . . . . . 10
⊢ (𝑤 ∈ (0[,]1) → [𝑤] ∼ ⊆
(0[,]1)) | 
| 18 | 3, 15, 17 | ectocl 8825 | . . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → 𝑧 ⊆ (0[,]1)) | 
| 19 | 18 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ⊆ (0[,]1)) | 
| 20 | 19 | sseld 3982 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑧) ∈ 𝑧 → (𝐹‘𝑧) ∈ (0[,]1))) | 
| 21 | 14, 20 | embantd 59 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) → (𝐹‘𝑧) ∈ (0[,]1))) | 
| 22 | 21 | ralimdva 3167 | . . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ (0[,]1))) | 
| 23 | 2, 22 | mpd 15 | . . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ (0[,]1)) | 
| 24 |  | ffnfv 7139 | . . . 4
⊢ (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ (0[,]1))) | 
| 25 | 1, 23, 24 | sylanbrc 583 | . . 3
⊢ (𝜑 → 𝐹:𝑆⟶(0[,]1)) | 
| 26 | 25 | frnd 6744 | . 2
⊢ (𝜑 → ran 𝐹 ⊆ (0[,]1)) | 
| 27 |  | vitali.5 | . . . . . . . 8
⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) | 
| 28 | 27 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) | 
| 29 |  | f1ocnv 6860 | . . . . . . 7
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → ◡𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ) | 
| 30 |  | f1of 6848 | . . . . . . 7
⊢ (◡𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ → ◡𝐺:(ℚ ∩
(-1[,]1))⟶ℕ) | 
| 31 | 28, 29, 30 | 3syl 18 | . . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ◡𝐺:(ℚ ∩
(-1[,]1))⟶ℕ) | 
| 32 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1)) | 
| 33 | 32, 11 | sylib 218 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ≠
∅) | 
| 34 |  | neeq1 3003 | . . . . . . . . . . . 12
⊢ (𝑧 = [𝑣] ∼ → (𝑧 ≠ ∅ ↔ [𝑣] ∼ ≠
∅)) | 
| 35 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑧 = [𝑣] ∼ → (𝐹‘𝑧) = (𝐹‘[𝑣] ∼ )) | 
| 36 |  | id 22 | . . . . . . . . . . . . 13
⊢ (𝑧 = [𝑣] ∼ → 𝑧 = [𝑣] ∼ ) | 
| 37 | 35, 36 | eleq12d 2835 | . . . . . . . . . . . 12
⊢ (𝑧 = [𝑣] ∼ → ((𝐹‘𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) | 
| 38 | 34, 37 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑧 = [𝑣] ∼ → ((𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) ↔ ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼
))) | 
| 39 | 2 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) | 
| 40 |  | ovex 7464 | . . . . . . . . . . . . . . 15
⊢ (0[,]1)
∈ V | 
| 41 |  | erex 8769 | . . . . . . . . . . . . . . 15
⊢ ( ∼ Er
(0[,]1) → ((0[,]1) ∈ V → ∼ ∈
V)) | 
| 42 | 6, 40, 41 | mp2 9 | . . . . . . . . . . . . . 14
⊢  ∼ ∈
V | 
| 43 | 42 | ecelqsi 8813 | . . . . . . . . . . . . 13
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ∈ ((0[,]1)
/ ∼ )) | 
| 44 | 43 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ∈ ((0[,]1)
/ ∼ )) | 
| 45 | 44, 3 | eleqtrrdi 2852 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ∈ 𝑆) | 
| 46 | 38, 39, 45 | rspcdva 3623 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) | 
| 47 | 33, 46 | mpd 15 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ) | 
| 48 |  | fvex 6919 | . . . . . . . . . . 11
⊢ (𝐹‘[𝑣] ∼ ) ∈
V | 
| 49 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑣 ∈ V | 
| 50 | 48, 49 | elec 8791 | . . . . . . . . . 10
⊢ ((𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ↔ 𝑣 ∼ (𝐹‘[𝑣] ∼ )) | 
| 51 |  | oveq12 7440 | . . . . . . . . . . . 12
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = (𝐹‘[𝑣] ∼ )) → (𝑥 − 𝑦) = (𝑣 − (𝐹‘[𝑣] ∼
))) | 
| 52 | 51 | eleq1d 2826 | . . . . . . . . . . 11
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = (𝐹‘[𝑣] ∼ )) → ((𝑥 − 𝑦) ∈ ℚ ↔ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) | 
| 53 | 52, 5 | brab2a 5779 | . . . . . . . . . 10
⊢ (𝑣 ∼ (𝐹‘[𝑣] ∼ ) ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈ (0[,]1))
∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) | 
| 54 | 50, 53 | bitri 275 | . . . . . . . . 9
⊢ ((𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈ (0[,]1))
∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) | 
| 55 | 47, 54 | sylib 218 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈ (0[,]1))
∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) | 
| 56 | 55 | simprd 495 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ) | 
| 57 |  | elicc01 13506 | . . . . . . . . . . 11
⊢ (𝑣 ∈ (0[,]1) ↔ (𝑣 ∈ ℝ ∧ 0 ≤
𝑣 ∧ 𝑣 ≤ 1)) | 
| 58 | 32, 57 | sylib 218 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ∧ 𝑣 ≤ 1)) | 
| 59 | 58 | simp1d 1143 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℝ) | 
| 60 | 55 | simpld 494 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈
(0[,]1))) | 
| 61 | 60 | simprd 495 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈
(0[,]1)) | 
| 62 |  | elicc01 13506 | . . . . . . . . . . 11
⊢ ((𝐹‘[𝑣] ∼ ) ∈ (0[,]1)
↔ ((𝐹‘[𝑣] ∼ ) ∈ ℝ
∧ 0 ≤ (𝐹‘[𝑣] ∼ ) ∧ (𝐹‘[𝑣] ∼ ) ≤
1)) | 
| 63 | 61, 62 | sylib 218 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) ∈ ℝ
∧ 0 ≤ (𝐹‘[𝑣] ∼ ) ∧ (𝐹‘[𝑣] ∼ ) ≤
1)) | 
| 64 | 63 | simp1d 1143 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈
ℝ) | 
| 65 | 59, 64 | resubcld 11691 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℝ) | 
| 66 | 64, 59 | resubcld 11691 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) − 𝑣) ∈
ℝ) | 
| 67 |  | 1red 11262 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 1 ∈
ℝ) | 
| 68 | 58 | simp2d 1144 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 0 ≤ 𝑣) | 
| 69 | 64, 59 | subge02d 11855 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (0 ≤ 𝑣 ↔ ((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ (𝐹‘[𝑣] ∼
))) | 
| 70 | 68, 69 | mpbid 232 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ (𝐹‘[𝑣] ∼ )) | 
| 71 | 63 | simp3d 1145 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ≤
1) | 
| 72 | 66, 64, 67, 70, 71 | letrd 11418 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ 1) | 
| 73 | 66, 67 | lenegd 11842 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ 1 ↔ -1 ≤ -((𝐹‘[𝑣] ∼ ) − 𝑣))) | 
| 74 | 72, 73 | mpbid 232 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → -1 ≤ -((𝐹‘[𝑣] ∼ ) − 𝑣)) | 
| 75 | 64 | recnd 11289 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈
ℂ) | 
| 76 | 59 | recnd 11289 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℂ) | 
| 77 | 75, 76 | negsubdi2d 11636 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → -((𝐹‘[𝑣] ∼ ) − 𝑣) = (𝑣 − (𝐹‘[𝑣] ∼
))) | 
| 78 | 74, 77 | breqtrd 5169 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → -1 ≤ (𝑣 − (𝐹‘[𝑣] ∼
))) | 
| 79 | 63 | simp2d 1144 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 0 ≤ (𝐹‘[𝑣] ∼ )) | 
| 80 | 59, 64 | subge02d 11855 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (0 ≤ (𝐹‘[𝑣] ∼ ) ↔ (𝑣 − (𝐹‘[𝑣] ∼ )) ≤ 𝑣)) | 
| 81 | 79, 80 | mpbid 232 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ≤ 𝑣) | 
| 82 | 58 | simp3d 1145 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ≤ 1) | 
| 83 | 65, 59, 67, 81, 82 | letrd 11418 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ≤
1) | 
| 84 |  | neg1rr 12381 | . . . . . . . . 9
⊢ -1 ∈
ℝ | 
| 85 |  | 1re 11261 | . . . . . . . . 9
⊢ 1 ∈
ℝ | 
| 86 | 84, 85 | elicc2i 13453 | . . . . . . . 8
⊢ ((𝑣 − (𝐹‘[𝑣] ∼ )) ∈ (-1[,]1)
↔ ((𝑣 − (𝐹‘[𝑣] ∼ )) ∈ ℝ
∧ -1 ≤ (𝑣 −
(𝐹‘[𝑣] ∼ )) ∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ≤
1)) | 
| 87 | 65, 78, 83, 86 | syl3anbrc 1344 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
(-1[,]1)) | 
| 88 | 56, 87 | elind 4200 | . . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈ (ℚ
∩ (-1[,]1))) | 
| 89 | 31, 88 | ffvelcdmd 7105 | . . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) ∈
ℕ) | 
| 90 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑠 = 𝑣 → (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) = (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
)))))) | 
| 91 | 90 | eleq1d 2826 | . . . . . . 7
⊢ (𝑠 = 𝑣 → ((𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹 ↔ (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹)) | 
| 92 |  | f1ocnvfv2 7297 | . . . . . . . . . . 11
⊢ ((𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈ (ℚ
∩ (-1[,]1))) → (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = (𝑣 − (𝐹‘[𝑣] ∼
))) | 
| 93 | 27, 88, 92 | syl2an2r 685 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = (𝑣 − (𝐹‘[𝑣] ∼
))) | 
| 94 | 93 | oveq2d 7447 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) = (𝑣 − (𝑣 − (𝐹‘[𝑣] ∼
)))) | 
| 95 | 76, 75 | nncand 11625 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝑣 − (𝐹‘[𝑣] ∼ ))) = (𝐹‘[𝑣] ∼ )) | 
| 96 | 94, 95 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) = (𝐹‘[𝑣] ∼ )) | 
| 97 |  | fnfvelrn 7100 | . . . . . . . . 9
⊢ ((𝐹 Fn 𝑆 ∧ [𝑣] ∼ ∈ 𝑆) → (𝐹‘[𝑣] ∼ ) ∈ ran 𝐹) | 
| 98 | 1, 45, 97 | syl2an2r 685 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈ ran 𝐹) | 
| 99 | 96, 98 | eqeltrd 2841 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹) | 
| 100 | 91, 59, 99 | elrabd 3694 | . . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) | 
| 101 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → (𝐺‘𝑛) = (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
))))) | 
| 102 | 101 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
)))))) | 
| 103 | 102 | eleq1d 2826 | . . . . . . . . 9
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹)) | 
| 104 | 103 | rabbidv 3444 | . . . . . . . 8
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) | 
| 105 |  | vitali.6 | . . . . . . . 8
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) | 
| 106 |  | reex 11246 | . . . . . . . . 9
⊢ ℝ
∈ V | 
| 107 | 106 | rabex 5339 | . . . . . . . 8
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹} ∈
V | 
| 108 | 104, 105,
107 | fvmpt 7016 | . . . . . . 7
⊢ ((◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) ∈ ℕ
→ (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) | 
| 109 | 89, 108 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) | 
| 110 | 100, 109 | eleqtrrd 2844 | . . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
))))) | 
| 111 |  | fveq2 6906 | . . . . . 6
⊢ (𝑚 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → (𝑇‘𝑚) = (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
))))) | 
| 112 | 111 | eliuni 4997 | . . . . 5
⊢ (((◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) ∈ ℕ
∧ 𝑣 ∈ (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) | 
| 113 | 89, 110, 112 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ ∪
𝑚 ∈ ℕ (𝑇‘𝑚)) | 
| 114 | 113 | ex 412 | . . 3
⊢ (𝜑 → (𝑣 ∈ (0[,]1) → 𝑣 ∈ ∪
𝑚 ∈ ℕ (𝑇‘𝑚))) | 
| 115 | 114 | ssrdv 3989 | . 2
⊢ (𝜑 → (0[,]1) ⊆ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) | 
| 116 |  | eliun 4995 | . . . 4
⊢ (𝑥 ∈ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇‘𝑚)) | 
| 117 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝐺‘𝑛) = (𝐺‘𝑚)) | 
| 118 | 117 | oveq2d 7447 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘𝑚))) | 
| 119 | 118 | eleq1d 2826 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹)) | 
| 120 | 119 | rabbidv 3444 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) | 
| 121 | 106 | rabex 5339 | . . . . . . . . . . . 12
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ∈ V | 
| 122 | 120, 105,
121 | fvmpt 7016 | . . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) | 
| 123 | 122 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) | 
| 124 | 123 | eleq2d 2827 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ (𝑇‘𝑚) ↔ 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹})) | 
| 125 | 124 | biimpa 476 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) | 
| 126 |  | oveq1 7438 | . . . . . . . . . 10
⊢ (𝑠 = 𝑥 → (𝑠 − (𝐺‘𝑚)) = (𝑥 − (𝐺‘𝑚))) | 
| 127 | 126 | eleq1d 2826 | . . . . . . . . 9
⊢ (𝑠 = 𝑥 → ((𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹 ↔ (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹)) | 
| 128 | 127 | elrab 3692 | . . . . . . . 8
⊢ (𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ↔ (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹)) | 
| 129 | 125, 128 | sylib 218 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹)) | 
| 130 | 129 | simpld 494 | . . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ∈ ℝ) | 
| 131 | 84 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → -1 ∈ ℝ) | 
| 132 |  | iccssre 13469 | . . . . . . . . . 10
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆
ℝ) | 
| 133 | 84, 85, 132 | mp2an 692 | . . . . . . . . 9
⊢ (-1[,]1)
⊆ ℝ | 
| 134 |  | f1of 6848 | . . . . . . . . . . . 12
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) | 
| 135 | 27, 134 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) | 
| 136 | 135 | ffvelcdmda 7104 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ (ℚ ∩
(-1[,]1))) | 
| 137 | 136 | elin2d 4205 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ (-1[,]1)) | 
| 138 | 133, 137 | sselid 3981 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ ℝ) | 
| 139 | 138 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ∈ ℝ) | 
| 140 | 137 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ∈ (-1[,]1)) | 
| 141 | 84, 85 | elicc2i 13453 | . . . . . . . . 9
⊢ ((𝐺‘𝑚) ∈ (-1[,]1) ↔ ((𝐺‘𝑚) ∈ ℝ ∧ -1 ≤ (𝐺‘𝑚) ∧ (𝐺‘𝑚) ≤ 1)) | 
| 142 | 140, 141 | sylib 218 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) ∈ ℝ ∧ -1 ≤ (𝐺‘𝑚) ∧ (𝐺‘𝑚) ≤ 1)) | 
| 143 | 142 | simp2d 1144 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → -1 ≤ (𝐺‘𝑚)) | 
| 144 | 26 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ran 𝐹 ⊆ (0[,]1)) | 
| 145 | 129 | simprd 495 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹) | 
| 146 | 144, 145 | sseldd 3984 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 − (𝐺‘𝑚)) ∈ (0[,]1)) | 
| 147 |  | elicc01 13506 | . . . . . . . . . 10
⊢ ((𝑥 − (𝐺‘𝑚)) ∈ (0[,]1) ↔ ((𝑥 − (𝐺‘𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺‘𝑚)) ∧ (𝑥 − (𝐺‘𝑚)) ≤ 1)) | 
| 148 | 146, 147 | sylib 218 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝑥 − (𝐺‘𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺‘𝑚)) ∧ (𝑥 − (𝐺‘𝑚)) ≤ 1)) | 
| 149 | 148 | simp2d 1144 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 0 ≤ (𝑥 − (𝐺‘𝑚))) | 
| 150 | 130, 139 | subge0d 11853 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (0 ≤ (𝑥 − (𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ 𝑥)) | 
| 151 | 149, 150 | mpbid 232 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ≤ 𝑥) | 
| 152 | 131, 139,
130, 143, 151 | letrd 11418 | . . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → -1 ≤ 𝑥) | 
| 153 |  | peano2re 11434 | . . . . . . . 8
⊢ ((𝐺‘𝑚) ∈ ℝ → ((𝐺‘𝑚) + 1) ∈ ℝ) | 
| 154 | 139, 153 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) + 1) ∈ ℝ) | 
| 155 |  | 2re 12340 | . . . . . . . 8
⊢ 2 ∈
ℝ | 
| 156 | 155 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 2 ∈ ℝ) | 
| 157 | 148 | simp3d 1145 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 − (𝐺‘𝑚)) ≤ 1) | 
| 158 |  | 1red 11262 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 1 ∈ ℝ) | 
| 159 | 130, 139,
158 | lesubadd2d 11862 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝑥 − (𝐺‘𝑚)) ≤ 1 ↔ 𝑥 ≤ ((𝐺‘𝑚) + 1))) | 
| 160 | 157, 159 | mpbid 232 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ≤ ((𝐺‘𝑚) + 1)) | 
| 161 | 142 | simp3d 1145 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ≤ 1) | 
| 162 | 139, 158,
158, 161 | leadd1dd 11877 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) + 1) ≤ (1 + 1)) | 
| 163 |  | df-2 12329 | . . . . . . . 8
⊢ 2 = (1 +
1) | 
| 164 | 162, 163 | breqtrrdi 5185 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) + 1) ≤ 2) | 
| 165 | 130, 154,
156, 160, 164 | letrd 11418 | . . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ≤ 2) | 
| 166 | 84, 155 | elicc2i 13453 | . . . . . 6
⊢ (𝑥 ∈ (-1[,]2) ↔ (𝑥 ∈ ℝ ∧ -1 ≤
𝑥 ∧ 𝑥 ≤ 2)) | 
| 167 | 130, 152,
165, 166 | syl3anbrc 1344 | . . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ∈ (-1[,]2)) | 
| 168 | 167 | rexlimdva2 3157 | . . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇‘𝑚) → 𝑥 ∈ (-1[,]2))) | 
| 169 | 116, 168 | biimtrid 242 | . . 3
⊢ (𝜑 → (𝑥 ∈ ∪
𝑚 ∈ ℕ (𝑇‘𝑚) → 𝑥 ∈ (-1[,]2))) | 
| 170 | 169 | ssrdv 3989 | . 2
⊢ (𝜑 → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2)) | 
| 171 | 26, 115, 170 | 3jca 1129 | 1
⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆
∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪
𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) |