MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem2 Structured version   Visualization version   GIF version

Theorem vitalilem2 25010
Description: Lemma for vitali 25014. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
vitali.2 𝑆 = ((0[,]1) / )
vitali.3 (𝜑𝐹 Fn 𝑆)
vitali.4 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
vitali.5 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
vitali.6 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
vitali.7 (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol))
Assertion
Ref Expression
vitalilem2 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
Distinct variable groups:   𝑚,𝑛,𝑠,𝑥,𝑦,𝑧,𝐺   𝜑,𝑚,𝑛,𝑥,𝑧   𝑧,𝑆   𝑇,𝑚,𝑥   𝑚,𝐹,𝑛,𝑠,𝑥,𝑦,𝑧   ,𝑚,𝑛,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝑆(𝑥,𝑦,𝑚,𝑛,𝑠)   𝑇(𝑦,𝑧,𝑛,𝑠)

Proof of Theorem vitalilem2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.3 . . . 4 (𝜑𝐹 Fn 𝑆)
2 vitali.4 . . . . 5 (𝜑 → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
3 vitali.2 . . . . . . . . 9 𝑆 = ((0[,]1) / )
4 neeq1 3002 . . . . . . . . 9 ([𝑣] = 𝑧 → ([𝑣] ≠ ∅ ↔ 𝑧 ≠ ∅))
5 vitali.1 . . . . . . . . . . . . . 14 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
65vitalilem1 25009 . . . . . . . . . . . . 13 Er (0[,]1)
7 erdm 8665 . . . . . . . . . . . . 13 ( Er (0[,]1) → dom = (0[,]1))
86, 7ax-mp 5 . . . . . . . . . . . 12 dom = (0[,]1)
98eleq2i 2824 . . . . . . . . . . 11 (𝑣 ∈ dom 𝑣 ∈ (0[,]1))
10 ecdmn0 8702 . . . . . . . . . . 11 (𝑣 ∈ dom ↔ [𝑣] ≠ ∅)
119, 10bitr3i 276 . . . . . . . . . 10 (𝑣 ∈ (0[,]1) ↔ [𝑣] ≠ ∅)
1211biimpi 215 . . . . . . . . 9 (𝑣 ∈ (0[,]1) → [𝑣] ≠ ∅)
133, 4, 12ectocl 8731 . . . . . . . 8 (𝑧𝑆𝑧 ≠ ∅)
1413adantl 482 . . . . . . 7 ((𝜑𝑧𝑆) → 𝑧 ≠ ∅)
15 sseq1 3972 . . . . . . . . . 10 ([𝑤] = 𝑧 → ([𝑤] ⊆ (0[,]1) ↔ 𝑧 ⊆ (0[,]1)))
166a1i 11 . . . . . . . . . . 11 (𝑤 ∈ (0[,]1) → Er (0[,]1))
1716ecss 8701 . . . . . . . . . 10 (𝑤 ∈ (0[,]1) → [𝑤] ⊆ (0[,]1))
183, 15, 17ectocl 8731 . . . . . . . . 9 (𝑧𝑆𝑧 ⊆ (0[,]1))
1918adantl 482 . . . . . . . 8 ((𝜑𝑧𝑆) → 𝑧 ⊆ (0[,]1))
2019sseld 3946 . . . . . . 7 ((𝜑𝑧𝑆) → ((𝐹𝑧) ∈ 𝑧 → (𝐹𝑧) ∈ (0[,]1)))
2114, 20embantd 59 . . . . . 6 ((𝜑𝑧𝑆) → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → (𝐹𝑧) ∈ (0[,]1)))
2221ralimdva 3160 . . . . 5 (𝜑 → (∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
232, 22mpd 15 . . . 4 (𝜑 → ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1))
24 ffnfv 7071 . . . 4 (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧𝑆 (𝐹𝑧) ∈ (0[,]1)))
251, 23, 24sylanbrc 583 . . 3 (𝜑𝐹:𝑆⟶(0[,]1))
2625frnd 6681 . 2 (𝜑 → ran 𝐹 ⊆ (0[,]1))
27 vitali.5 . . . . . . . 8 (𝜑𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
2827adantr 481 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)))
29 f1ocnv 6801 . . . . . . 7 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ)
30 f1of 6789 . . . . . . 7 (𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ → 𝐺:(ℚ ∩ (-1[,]1))⟶ℕ)
3128, 29, 303syl 18 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → 𝐺:(ℚ ∩ (-1[,]1))⟶ℕ)
32 simpr 485 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1))
3332, 11sylib 217 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] ≠ ∅)
34 neeq1 3002 . . . . . . . . . . . 12 (𝑧 = [𝑣] → (𝑧 ≠ ∅ ↔ [𝑣] ≠ ∅))
35 fveq2 6847 . . . . . . . . . . . . 13 (𝑧 = [𝑣] → (𝐹𝑧) = (𝐹‘[𝑣] ))
36 id 22 . . . . . . . . . . . . 13 (𝑧 = [𝑣] 𝑧 = [𝑣] )
3735, 36eleq12d 2826 . . . . . . . . . . . 12 (𝑧 = [𝑣] → ((𝐹𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ) ∈ [𝑣] ))
3834, 37imbi12d 344 . . . . . . . . . . 11 (𝑧 = [𝑣] → ((𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧) ↔ ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] )))
392adantr 481 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ∀𝑧𝑆 (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
40 ovex 7395 . . . . . . . . . . . . . . 15 (0[,]1) ∈ V
41 erex 8679 . . . . . . . . . . . . . . 15 ( Er (0[,]1) → ((0[,]1) ∈ V → ∈ V))
426, 40, 41mp2 9 . . . . . . . . . . . . . 14 ∈ V
4342ecelqsi 8719 . . . . . . . . . . . . 13 (𝑣 ∈ (0[,]1) → [𝑣] ∈ ((0[,]1) / ))
4443adantl 482 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] ∈ ((0[,]1) / ))
4544, 3eleqtrrdi 2843 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → [𝑣] 𝑆)
4638, 39, 45rspcdva 3583 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → ([𝑣] ≠ ∅ → (𝐹‘[𝑣] ) ∈ [𝑣] ))
4733, 46mpd 15 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ [𝑣] )
48 fvex 6860 . . . . . . . . . . 11 (𝐹‘[𝑣] ) ∈ V
49 vex 3450 . . . . . . . . . . 11 𝑣 ∈ V
5048, 49elec 8699 . . . . . . . . . 10 ((𝐹‘[𝑣] ) ∈ [𝑣] 𝑣 (𝐹‘[𝑣] ))
51 oveq12 7371 . . . . . . . . . . . 12 ((𝑥 = 𝑣𝑦 = (𝐹‘[𝑣] )) → (𝑥𝑦) = (𝑣 − (𝐹‘[𝑣] )))
5251eleq1d 2817 . . . . . . . . . . 11 ((𝑥 = 𝑣𝑦 = (𝐹‘[𝑣] )) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5352, 5brab2a 5730 . . . . . . . . . 10 (𝑣 (𝐹‘[𝑣] ) ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5450, 53bitri 274 . . . . . . . . 9 ((𝐹‘[𝑣] ) ∈ [𝑣] ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5547, 54sylib 217 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ))
5655simprd 496 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ ℚ)
57 elicc01 13393 . . . . . . . . . . 11 (𝑣 ∈ (0[,]1) ↔ (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣𝑣 ≤ 1))
5832, 57sylib 217 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣𝑣 ≤ 1))
5958simp1d 1142 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℝ)
6055simpld 495 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ) ∈ (0[,]1)))
6160simprd 496 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ (0[,]1))
62 elicc01 13393 . . . . . . . . . . 11 ((𝐹‘[𝑣] ) ∈ (0[,]1) ↔ ((𝐹‘[𝑣] ) ∈ ℝ ∧ 0 ≤ (𝐹‘[𝑣] ) ∧ (𝐹‘[𝑣] ) ≤ 1))
6361, 62sylib 217 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) ∈ ℝ ∧ 0 ≤ (𝐹‘[𝑣] ) ∧ (𝐹‘[𝑣] ) ≤ 1))
6463simp1d 1142 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ℝ)
6559, 64resubcld 11592 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ ℝ)
6664, 59resubcld 11592 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ∈ ℝ)
67 1red 11165 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → 1 ∈ ℝ)
6858simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → 0 ≤ 𝑣)
6964, 59subge02d 11756 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (0[,]1)) → (0 ≤ 𝑣 ↔ ((𝐹‘[𝑣] ) − 𝑣) ≤ (𝐹‘[𝑣] )))
7068, 69mpbid 231 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ≤ (𝐹‘[𝑣] ))
7163simp3d 1144 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ≤ 1)
7266, 64, 67, 70, 71letrd 11321 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ) − 𝑣) ≤ 1)
7366, 67lenegd 11743 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (((𝐹‘[𝑣] ) − 𝑣) ≤ 1 ↔ -1 ≤ -((𝐹‘[𝑣] ) − 𝑣)))
7472, 73mpbid 231 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → -1 ≤ -((𝐹‘[𝑣] ) − 𝑣))
7564recnd 11192 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ℂ)
7659recnd 11192 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℂ)
7775, 76negsubdi2d 11537 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → -((𝐹‘[𝑣] ) − 𝑣) = (𝑣 − (𝐹‘[𝑣] )))
7874, 77breqtrd 5136 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → -1 ≤ (𝑣 − (𝐹‘[𝑣] )))
7963simp2d 1143 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → 0 ≤ (𝐹‘[𝑣] ))
8059, 64subge02d 11756 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (0 ≤ (𝐹‘[𝑣] ) ↔ (𝑣 − (𝐹‘[𝑣] )) ≤ 𝑣))
8179, 80mpbid 231 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ≤ 𝑣)
8258simp3d 1144 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ≤ 1)
8365, 59, 67, 81, 82letrd 11321 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ≤ 1)
84 neg1rr 12277 . . . . . . . . 9 -1 ∈ ℝ
85 1re 11164 . . . . . . . . 9 1 ∈ ℝ
8684, 85elicc2i 13340 . . . . . . . 8 ((𝑣 − (𝐹‘[𝑣] )) ∈ (-1[,]1) ↔ ((𝑣 − (𝐹‘[𝑣] )) ∈ ℝ ∧ -1 ≤ (𝑣 − (𝐹‘[𝑣] )) ∧ (𝑣 − (𝐹‘[𝑣] )) ≤ 1))
8765, 78, 83, 86syl3anbrc 1343 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ (-1[,]1))
8856, 87elind 4159 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] )) ∈ (ℚ ∩ (-1[,]1)))
8931, 88ffvelcdmd 7041 . . . . 5 ((𝜑𝑣 ∈ (0[,]1)) → (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ)
90 oveq1 7369 . . . . . . . 8 (𝑠 = 𝑣 → (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))))
9190eleq1d 2817 . . . . . . 7 (𝑠 = 𝑣 → ((𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹 ↔ (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹))
92 f1ocnvfv2 7228 . . . . . . . . . . 11 ((𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] )) ∈ (ℚ ∩ (-1[,]1))) → (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = (𝑣 − (𝐹‘[𝑣] )))
9327, 88, 92syl2an2r 683 . . . . . . . . . 10 ((𝜑𝑣 ∈ (0[,]1)) → (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = (𝑣 − (𝐹‘[𝑣] )))
9493oveq2d 7378 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝑣 − (𝑣 − (𝐹‘[𝑣] ))))
9576, 75nncand 11526 . . . . . . . . 9 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝑣 − (𝐹‘[𝑣] ))) = (𝐹‘[𝑣] ))
9694, 95eqtrd 2771 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) = (𝐹‘[𝑣] ))
97 fnfvelrn 7036 . . . . . . . . 9 ((𝐹 Fn 𝑆 ∧ [𝑣] 𝑆) → (𝐹‘[𝑣] ) ∈ ran 𝐹)
981, 45, 97syl2an2r 683 . . . . . . . 8 ((𝜑𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ) ∈ ran 𝐹)
9996, 98eqeltrd 2832 . . . . . . 7 ((𝜑𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹)
10091, 59, 99elrabd 3650 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
101 fveq2 6847 . . . . . . . . . . 11 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝐺𝑛) = (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
102101oveq2d 7378 . . . . . . . . . 10 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))))
103102eleq1d 2817 . . . . . . . . 9 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹))
104103rabbidv 3413 . . . . . . . 8 (𝑛 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
105 vitali.6 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹})
106 reex 11151 . . . . . . . . 9 ℝ ∈ V
107106rabex 5294 . . . . . . . 8 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹} ∈ V
108104, 105, 107fvmpt 6953 . . . . . . 7 ((𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ → (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
10989, 108syl 17 . . . . . 6 ((𝜑𝑣 ∈ (0[,]1)) → (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) ∈ ran 𝐹})
110100, 109eleqtrrd 2835 . . . . 5 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 ∈ (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
111 fveq2 6847 . . . . . 6 (𝑚 = (𝐺‘(𝑣 − (𝐹‘[𝑣] ))) → (𝑇𝑚) = (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] )))))
112111eliuni 4965 . . . . 5 (((𝐺‘(𝑣 − (𝐹‘[𝑣] ))) ∈ ℕ ∧ 𝑣 ∈ (𝑇‘(𝐺‘(𝑣 − (𝐹‘[𝑣] ))))) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚))
11389, 110, 112syl2anc 584 . . . 4 ((𝜑𝑣 ∈ (0[,]1)) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚))
114113ex 413 . . 3 (𝜑 → (𝑣 ∈ (0[,]1) → 𝑣 𝑚 ∈ ℕ (𝑇𝑚)))
115114ssrdv 3953 . 2 (𝜑 → (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚))
116 eliun 4963 . . . 4 (𝑥 𝑚 ∈ ℕ (𝑇𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇𝑚))
117 fveq2 6847 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
118117oveq2d 7378 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑠 − (𝐺𝑛)) = (𝑠 − (𝐺𝑚)))
119118eleq1d 2817 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝑠 − (𝐺𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹))
120119rabbidv 3413 . . . . . . . . . . . 12 (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
121106rabex 5294 . . . . . . . . . . . 12 {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ∈ V
122120, 105, 121fvmpt 6953 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
123122adantl 482 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑇𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
124123eleq2d 2818 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑥 ∈ (𝑇𝑚) ↔ 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹}))
125124biimpa 477 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹})
126 oveq1 7369 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠 − (𝐺𝑚)) = (𝑥 − (𝐺𝑚)))
127126eleq1d 2817 . . . . . . . . 9 (𝑠 = 𝑥 → ((𝑠 − (𝐺𝑚)) ∈ ran 𝐹 ↔ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
128127elrab 3648 . . . . . . . 8 (𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺𝑚)) ∈ ran 𝐹} ↔ (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
129125, 128sylib 217 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺𝑚)) ∈ ran 𝐹))
130129simpld 495 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ ℝ)
13184a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ∈ ℝ)
132 iccssre 13356 . . . . . . . . . 10 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆ ℝ)
13384, 85, 132mp2an 690 . . . . . . . . 9 (-1[,]1) ⊆ ℝ
134 f1of 6789 . . . . . . . . . . . 12 (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
13527, 134syl 17 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶(ℚ ∩ (-1[,]1)))
136135ffvelcdmda 7040 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (ℚ ∩ (-1[,]1)))
137136elin2d 4164 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ (-1[,]1))
138133, 137sselid 3945 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℝ)
139138adantr 481 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ∈ ℝ)
140137adantr 481 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ∈ (-1[,]1))
14184, 85elicc2i 13340 . . . . . . . . 9 ((𝐺𝑚) ∈ (-1[,]1) ↔ ((𝐺𝑚) ∈ ℝ ∧ -1 ≤ (𝐺𝑚) ∧ (𝐺𝑚) ≤ 1))
142140, 141sylib 217 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) ∈ ℝ ∧ -1 ≤ (𝐺𝑚) ∧ (𝐺𝑚) ≤ 1))
143142simp2d 1143 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ≤ (𝐺𝑚))
14426ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ran 𝐹 ⊆ (0[,]1))
145129simprd 496 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ∈ ran 𝐹)
146144, 145sseldd 3948 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ∈ (0[,]1))
147 elicc01 13393 . . . . . . . . . 10 ((𝑥 − (𝐺𝑚)) ∈ (0[,]1) ↔ ((𝑥 − (𝐺𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺𝑚)) ∧ (𝑥 − (𝐺𝑚)) ≤ 1))
148146, 147sylib 217 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝑥 − (𝐺𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺𝑚)) ∧ (𝑥 − (𝐺𝑚)) ≤ 1))
149148simp2d 1143 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 0 ≤ (𝑥 − (𝐺𝑚)))
150130, 139subge0d 11754 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (0 ≤ (𝑥 − (𝐺𝑚)) ↔ (𝐺𝑚) ≤ 𝑥))
151149, 150mpbid 231 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ≤ 𝑥)
152131, 139, 130, 143, 151letrd 11321 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → -1 ≤ 𝑥)
153 peano2re 11337 . . . . . . . 8 ((𝐺𝑚) ∈ ℝ → ((𝐺𝑚) + 1) ∈ ℝ)
154139, 153syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ∈ ℝ)
155 2re 12236 . . . . . . . 8 2 ∈ ℝ
156155a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 2 ∈ ℝ)
157148simp3d 1144 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝑥 − (𝐺𝑚)) ≤ 1)
158 1red 11165 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 1 ∈ ℝ)
159130, 139, 158lesubadd2d 11763 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝑥 − (𝐺𝑚)) ≤ 1 ↔ 𝑥 ≤ ((𝐺𝑚) + 1)))
160157, 159mpbid 231 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ≤ ((𝐺𝑚) + 1))
161142simp3d 1144 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → (𝐺𝑚) ≤ 1)
162139, 158, 158, 161leadd1dd 11778 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ≤ (1 + 1))
163 df-2 12225 . . . . . . . 8 2 = (1 + 1)
164162, 163breqtrrdi 5152 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → ((𝐺𝑚) + 1) ≤ 2)
165130, 154, 156, 160, 164letrd 11321 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ≤ 2)
16684, 155elicc2i 13340 . . . . . 6 (𝑥 ∈ (-1[,]2) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥𝑥 ≤ 2))
167130, 152, 165, 166syl3anbrc 1343 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇𝑚)) → 𝑥 ∈ (-1[,]2))
168167rexlimdva2 3150 . . . 4 (𝜑 → (∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇𝑚) → 𝑥 ∈ (-1[,]2)))
169116, 168biimtrid 241 . . 3 (𝜑 → (𝑥 𝑚 ∈ ℕ (𝑇𝑚) → 𝑥 ∈ (-1[,]2)))
170169ssrdv 3953 . 2 (𝜑 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2))
17126, 115, 1703jca 1128 1 (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ 𝑚 ∈ ℕ (𝑇𝑚) ∧ 𝑚 ∈ ℕ (𝑇𝑚) ⊆ (-1[,]2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  {crab 3405  Vcvv 3446  cdif 3910  cin 3912  wss 3913  c0 4287  𝒫 cpw 4565   ciun 4959   class class class wbr 5110  {copab 5172  cmpt 5193  ccnv 5637  dom cdm 5638  ran crn 5639   Fn wfn 6496  wf 6497  1-1-ontowf1o 6500  cfv 6501  (class class class)co 7362   Er wer 8652  [cec 8653   / cqs 8654  cr 11059  0cc0 11060  1c1 11061   + caddc 11063  cle 11199  cmin 11394  -cneg 11395  cn 12162  2c2 12217  cq 12882  [,]cicc 13277  volcvol 24864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-ec 8657  df-qs 8661  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-n0 12423  df-z 12509  df-q 12883  df-icc 13281
This theorem is referenced by:  vitalilem3  25011  vitalilem4  25012  vitalilem5  25013
  Copyright terms: Public domain W3C validator