Step | Hyp | Ref
| Expression |
1 | | vitali.3 |
. . . 4
⊢ (𝜑 → 𝐹 Fn 𝑆) |
2 | | vitali.4 |
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
3 | | vitali.2 |
. . . . . . . . 9
⊢ 𝑆 = ((0[,]1) / ∼
) |
4 | | neeq1 3003 |
. . . . . . . . 9
⊢ ([𝑣] ∼ = 𝑧 → ([𝑣] ∼ ≠ ∅ ↔
𝑧 ≠
∅)) |
5 | | vitali.1 |
. . . . . . . . . . . . . 14
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} |
6 | 5 | vitalilem1 24505 |
. . . . . . . . . . . . 13
⊢ ∼ Er
(0[,]1) |
7 | | erdm 8401 |
. . . . . . . . . . . . 13
⊢ ( ∼ Er
(0[,]1) → dom ∼ =
(0[,]1)) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ dom ∼ =
(0[,]1) |
9 | 8 | eleq2i 2829 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ dom ∼ ↔ 𝑣 ∈
(0[,]1)) |
10 | | ecdmn0 8438 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ dom ∼ ↔ [𝑣] ∼ ≠
∅) |
11 | 9, 10 | bitr3i 280 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (0[,]1) ↔ [𝑣] ∼ ≠
∅) |
12 | 11 | biimpi 219 |
. . . . . . . . 9
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ≠
∅) |
13 | 3, 4, 12 | ectocl 8467 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → 𝑧 ≠ ∅) |
14 | 13 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ≠ ∅) |
15 | | sseq1 3926 |
. . . . . . . . . 10
⊢ ([𝑤] ∼ = 𝑧 → ([𝑤] ∼ ⊆ (0[,]1)
↔ 𝑧 ⊆
(0[,]1))) |
16 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (0[,]1) → ∼ Er
(0[,]1)) |
17 | 16 | ecss 8437 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (0[,]1) → [𝑤] ∼ ⊆
(0[,]1)) |
18 | 3, 15, 17 | ectocl 8467 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → 𝑧 ⊆ (0[,]1)) |
19 | 18 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ⊆ (0[,]1)) |
20 | 19 | sseld 3900 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑧) ∈ 𝑧 → (𝐹‘𝑧) ∈ (0[,]1))) |
21 | 14, 20 | embantd 59 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) → (𝐹‘𝑧) ∈ (0[,]1))) |
22 | 21 | ralimdva 3100 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ (0[,]1))) |
23 | 2, 22 | mpd 15 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ (0[,]1)) |
24 | | ffnfv 6935 |
. . . 4
⊢ (𝐹:𝑆⟶(0[,]1) ↔ (𝐹 Fn 𝑆 ∧ ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ (0[,]1))) |
25 | 1, 23, 24 | sylanbrc 586 |
. . 3
⊢ (𝜑 → 𝐹:𝑆⟶(0[,]1)) |
26 | 25 | frnd 6553 |
. 2
⊢ (𝜑 → ran 𝐹 ⊆ (0[,]1)) |
27 | | vitali.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) |
28 | 27 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) |
29 | | f1ocnv 6673 |
. . . . . . 7
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → ◡𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ) |
30 | | f1of 6661 |
. . . . . . 7
⊢ (◡𝐺:(ℚ ∩ (-1[,]1))–1-1-onto→ℕ → ◡𝐺:(ℚ ∩
(-1[,]1))⟶ℕ) |
31 | 28, 29, 30 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ◡𝐺:(ℚ ∩
(-1[,]1))⟶ℕ) |
32 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1)) |
33 | 32, 11 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ≠
∅) |
34 | | neeq1 3003 |
. . . . . . . . . . . 12
⊢ (𝑧 = [𝑣] ∼ → (𝑧 ≠ ∅ ↔ [𝑣] ∼ ≠
∅)) |
35 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑧 = [𝑣] ∼ → (𝐹‘𝑧) = (𝐹‘[𝑣] ∼ )) |
36 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑧 = [𝑣] ∼ → 𝑧 = [𝑣] ∼ ) |
37 | 35, 36 | eleq12d 2832 |
. . . . . . . . . . . 12
⊢ (𝑧 = [𝑣] ∼ → ((𝐹‘𝑧) ∈ 𝑧 ↔ (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) |
38 | 34, 37 | imbi12d 348 |
. . . . . . . . . . 11
⊢ (𝑧 = [𝑣] ∼ → ((𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧) ↔ ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼
))) |
39 | 2 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) |
40 | | ovex 7246 |
. . . . . . . . . . . . . . 15
⊢ (0[,]1)
∈ V |
41 | | erex 8415 |
. . . . . . . . . . . . . . 15
⊢ ( ∼ Er
(0[,]1) → ((0[,]1) ∈ V → ∼ ∈
V)) |
42 | 6, 40, 41 | mp2 9 |
. . . . . . . . . . . . . 14
⊢ ∼ ∈
V |
43 | 42 | ecelqsi 8455 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (0[,]1) → [𝑣] ∼ ∈ ((0[,]1)
/ ∼ )) |
44 | 43 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ∈ ((0[,]1)
/ ∼ )) |
45 | 44, 3 | eleqtrrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → [𝑣] ∼ ∈ 𝑆) |
46 | 38, 39, 45 | rspcdva 3539 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ([𝑣] ∼ ≠ ∅ →
(𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ )) |
47 | 33, 46 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ) |
48 | | fvex 6730 |
. . . . . . . . . . 11
⊢ (𝐹‘[𝑣] ∼ ) ∈
V |
49 | | vex 3412 |
. . . . . . . . . . 11
⊢ 𝑣 ∈ V |
50 | 48, 49 | elec 8435 |
. . . . . . . . . 10
⊢ ((𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ↔ 𝑣 ∼ (𝐹‘[𝑣] ∼ )) |
51 | | oveq12 7222 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = (𝐹‘[𝑣] ∼ )) → (𝑥 − 𝑦) = (𝑣 − (𝐹‘[𝑣] ∼
))) |
52 | 51 | eleq1d 2822 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = (𝐹‘[𝑣] ∼ )) → ((𝑥 − 𝑦) ∈ ℚ ↔ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) |
53 | 52, 5 | brab2a 5641 |
. . . . . . . . . 10
⊢ (𝑣 ∼ (𝐹‘[𝑣] ∼ ) ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈ (0[,]1))
∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) |
54 | 50, 53 | bitri 278 |
. . . . . . . . 9
⊢ ((𝐹‘[𝑣] ∼ ) ∈ [𝑣] ∼ ↔ ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈ (0[,]1))
∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) |
55 | 47, 54 | sylib 221 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈ (0[,]1))
∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ)) |
56 | 55 | simprd 499 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℚ) |
57 | | elicc01 13054 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (0[,]1) ↔ (𝑣 ∈ ℝ ∧ 0 ≤
𝑣 ∧ 𝑣 ≤ 1)) |
58 | 32, 57 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ∧ 𝑣 ≤ 1)) |
59 | 58 | simp1d 1144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℝ) |
60 | 55 | simpld 498 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 ∈ (0[,]1) ∧ (𝐹‘[𝑣] ∼ ) ∈
(0[,]1))) |
61 | 60 | simprd 499 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈
(0[,]1)) |
62 | | elicc01 13054 |
. . . . . . . . . . 11
⊢ ((𝐹‘[𝑣] ∼ ) ∈ (0[,]1)
↔ ((𝐹‘[𝑣] ∼ ) ∈ ℝ
∧ 0 ≤ (𝐹‘[𝑣] ∼ ) ∧ (𝐹‘[𝑣] ∼ ) ≤
1)) |
63 | 61, 62 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) ∈ ℝ
∧ 0 ≤ (𝐹‘[𝑣] ∼ ) ∧ (𝐹‘[𝑣] ∼ ) ≤
1)) |
64 | 63 | simp1d 1144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈
ℝ) |
65 | 59, 64 | resubcld 11260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
ℝ) |
66 | 64, 59 | resubcld 11260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) − 𝑣) ∈
ℝ) |
67 | | 1red 10834 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 1 ∈
ℝ) |
68 | 58 | simp2d 1145 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 0 ≤ 𝑣) |
69 | 64, 59 | subge02d 11424 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (0 ≤ 𝑣 ↔ ((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ (𝐹‘[𝑣] ∼
))) |
70 | 68, 69 | mpbid 235 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ (𝐹‘[𝑣] ∼ )) |
71 | 63 | simp3d 1146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ≤
1) |
72 | 66, 64, 67, 70, 71 | letrd 10989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → ((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ 1) |
73 | 66, 67 | lenegd 11411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (((𝐹‘[𝑣] ∼ ) − 𝑣) ≤ 1 ↔ -1 ≤ -((𝐹‘[𝑣] ∼ ) − 𝑣))) |
74 | 72, 73 | mpbid 235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → -1 ≤ -((𝐹‘[𝑣] ∼ ) − 𝑣)) |
75 | 64 | recnd 10861 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈
ℂ) |
76 | 59 | recnd 10861 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ ℂ) |
77 | 75, 76 | negsubdi2d 11205 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → -((𝐹‘[𝑣] ∼ ) − 𝑣) = (𝑣 − (𝐹‘[𝑣] ∼
))) |
78 | 74, 77 | breqtrd 5079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → -1 ≤ (𝑣 − (𝐹‘[𝑣] ∼
))) |
79 | 63 | simp2d 1145 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 0 ≤ (𝐹‘[𝑣] ∼ )) |
80 | 59, 64 | subge02d 11424 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (0 ≤ (𝐹‘[𝑣] ∼ ) ↔ (𝑣 − (𝐹‘[𝑣] ∼ )) ≤ 𝑣)) |
81 | 79, 80 | mpbid 235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ≤ 𝑣) |
82 | 58 | simp3d 1146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ≤ 1) |
83 | 65, 59, 67, 81, 82 | letrd 10989 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ≤
1) |
84 | | neg1rr 11945 |
. . . . . . . . 9
⊢ -1 ∈
ℝ |
85 | | 1re 10833 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
86 | 84, 85 | elicc2i 13001 |
. . . . . . . 8
⊢ ((𝑣 − (𝐹‘[𝑣] ∼ )) ∈ (-1[,]1)
↔ ((𝑣 − (𝐹‘[𝑣] ∼ )) ∈ ℝ
∧ -1 ≤ (𝑣 −
(𝐹‘[𝑣] ∼ )) ∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ≤
1)) |
87 | 65, 78, 83, 86 | syl3anbrc 1345 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈
(-1[,]1)) |
88 | 56, 87 | elind 4108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐹‘[𝑣] ∼ )) ∈ (ℚ
∩ (-1[,]1))) |
89 | 31, 88 | ffvelrnd 6905 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) ∈
ℕ) |
90 | | oveq1 7220 |
. . . . . . . 8
⊢ (𝑠 = 𝑣 → (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) = (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
)))))) |
91 | 90 | eleq1d 2822 |
. . . . . . 7
⊢ (𝑠 = 𝑣 → ((𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹 ↔ (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹)) |
92 | | f1ocnvfv2 7088 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) ∧ (𝑣 − (𝐹‘[𝑣] ∼ )) ∈ (ℚ
∩ (-1[,]1))) → (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = (𝑣 − (𝐹‘[𝑣] ∼
))) |
93 | 27, 88, 92 | syl2an2r 685 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = (𝑣 − (𝐹‘[𝑣] ∼
))) |
94 | 93 | oveq2d 7229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) = (𝑣 − (𝑣 − (𝐹‘[𝑣] ∼
)))) |
95 | 76, 75 | nncand 11194 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝑣 − (𝐹‘[𝑣] ∼ ))) = (𝐹‘[𝑣] ∼ )) |
96 | 94, 95 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) = (𝐹‘[𝑣] ∼ )) |
97 | | fnfvelrn 6901 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝑆 ∧ [𝑣] ∼ ∈ 𝑆) → (𝐹‘[𝑣] ∼ ) ∈ ran 𝐹) |
98 | 1, 45, 97 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘[𝑣] ∼ ) ∈ ran 𝐹) |
99 | 96, 98 | eqeltrd 2838 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑣 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹) |
100 | 91, 59, 99 | elrabd 3604 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) |
101 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → (𝐺‘𝑛) = (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
))))) |
102 | 101 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
)))))) |
103 | 102 | eleq1d 2822 |
. . . . . . . . 9
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹)) |
104 | 103 | rabbidv 3390 |
. . . . . . . 8
⊢ (𝑛 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) |
105 | | vitali.6 |
. . . . . . . 8
⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) |
106 | | reex 10820 |
. . . . . . . . 9
⊢ ℝ
∈ V |
107 | 106 | rabex 5225 |
. . . . . . . 8
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹} ∈
V |
108 | 104, 105,
107 | fvmpt 6818 |
. . . . . . 7
⊢ ((◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) ∈ ℕ
→ (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) |
109 | 89, 108 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ )))) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) ∈ ran
𝐹}) |
110 | 100, 109 | eleqtrrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
))))) |
111 | | fveq2 6717 |
. . . . . 6
⊢ (𝑚 = (◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) → (𝑇‘𝑚) = (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼
))))) |
112 | 111 | eliuni 4910 |
. . . . 5
⊢ (((◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))) ∈ ℕ
∧ 𝑣 ∈ (𝑇‘(◡𝐺‘(𝑣 − (𝐹‘[𝑣] ∼ ))))) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) |
113 | 89, 110, 112 | syl2anc 587 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ ∪
𝑚 ∈ ℕ (𝑇‘𝑚)) |
114 | 113 | ex 416 |
. . 3
⊢ (𝜑 → (𝑣 ∈ (0[,]1) → 𝑣 ∈ ∪
𝑚 ∈ ℕ (𝑇‘𝑚))) |
115 | 114 | ssrdv 3907 |
. 2
⊢ (𝜑 → (0[,]1) ⊆ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚)) |
116 | | eliun 4908 |
. . . 4
⊢ (𝑥 ∈ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇‘𝑚)) |
117 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝐺‘𝑛) = (𝐺‘𝑚)) |
118 | 117 | oveq2d 7229 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝑠 − (𝐺‘𝑛)) = (𝑠 − (𝐺‘𝑚))) |
119 | 118 | eleq1d 2822 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹 ↔ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
120 | 119 | rabbidv 3390 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹} = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
121 | 106 | rabex 5225 |
. . . . . . . . . . . 12
⊢ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ∈ V |
122 | 120, 105,
121 | fvmpt 6818 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
123 | 122 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑇‘𝑚) = {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
124 | 123 | eleq2d 2823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑥 ∈ (𝑇‘𝑚) ↔ 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹})) |
125 | 124 | biimpa 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹}) |
126 | | oveq1 7220 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑥 → (𝑠 − (𝐺‘𝑚)) = (𝑥 − (𝐺‘𝑚))) |
127 | 126 | eleq1d 2822 |
. . . . . . . . 9
⊢ (𝑠 = 𝑥 → ((𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹 ↔ (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
128 | 127 | elrab 3602 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑚)) ∈ ran 𝐹} ↔ (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
129 | 125, 128 | sylib 221 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 ∈ ℝ ∧ (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹)) |
130 | 129 | simpld 498 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ∈ ℝ) |
131 | 84 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → -1 ∈ ℝ) |
132 | | iccssre 13017 |
. . . . . . . . . 10
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ) → (-1[,]1) ⊆
ℝ) |
133 | 84, 85, 132 | mp2an 692 |
. . . . . . . . 9
⊢ (-1[,]1)
⊆ ℝ |
134 | | f1of 6661 |
. . . . . . . . . . . 12
⊢ (𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1)) → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
135 | 27, 134 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ⟶(ℚ ∩
(-1[,]1))) |
136 | 135 | ffvelrnda 6904 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ (ℚ ∩
(-1[,]1))) |
137 | 136 | elin2d 4113 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ (-1[,]1)) |
138 | 133, 137 | sseldi 3899 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ ℝ) |
139 | 138 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ∈ ℝ) |
140 | 137 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ∈ (-1[,]1)) |
141 | 84, 85 | elicc2i 13001 |
. . . . . . . . 9
⊢ ((𝐺‘𝑚) ∈ (-1[,]1) ↔ ((𝐺‘𝑚) ∈ ℝ ∧ -1 ≤ (𝐺‘𝑚) ∧ (𝐺‘𝑚) ≤ 1)) |
142 | 140, 141 | sylib 221 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) ∈ ℝ ∧ -1 ≤ (𝐺‘𝑚) ∧ (𝐺‘𝑚) ≤ 1)) |
143 | 142 | simp2d 1145 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → -1 ≤ (𝐺‘𝑚)) |
144 | 26 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ran 𝐹 ⊆ (0[,]1)) |
145 | 129 | simprd 499 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 − (𝐺‘𝑚)) ∈ ran 𝐹) |
146 | 144, 145 | sseldd 3902 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 − (𝐺‘𝑚)) ∈ (0[,]1)) |
147 | | elicc01 13054 |
. . . . . . . . . 10
⊢ ((𝑥 − (𝐺‘𝑚)) ∈ (0[,]1) ↔ ((𝑥 − (𝐺‘𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺‘𝑚)) ∧ (𝑥 − (𝐺‘𝑚)) ≤ 1)) |
148 | 146, 147 | sylib 221 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝑥 − (𝐺‘𝑚)) ∈ ℝ ∧ 0 ≤ (𝑥 − (𝐺‘𝑚)) ∧ (𝑥 − (𝐺‘𝑚)) ≤ 1)) |
149 | 148 | simp2d 1145 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 0 ≤ (𝑥 − (𝐺‘𝑚))) |
150 | 130, 139 | subge0d 11422 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (0 ≤ (𝑥 − (𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ 𝑥)) |
151 | 149, 150 | mpbid 235 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ≤ 𝑥) |
152 | 131, 139,
130, 143, 151 | letrd 10989 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → -1 ≤ 𝑥) |
153 | | peano2re 11005 |
. . . . . . . 8
⊢ ((𝐺‘𝑚) ∈ ℝ → ((𝐺‘𝑚) + 1) ∈ ℝ) |
154 | 139, 153 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) + 1) ∈ ℝ) |
155 | | 2re 11904 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
156 | 155 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 2 ∈ ℝ) |
157 | 148 | simp3d 1146 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝑥 − (𝐺‘𝑚)) ≤ 1) |
158 | | 1red 10834 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 1 ∈ ℝ) |
159 | 130, 139,
158 | lesubadd2d 11431 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝑥 − (𝐺‘𝑚)) ≤ 1 ↔ 𝑥 ≤ ((𝐺‘𝑚) + 1))) |
160 | 157, 159 | mpbid 235 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ≤ ((𝐺‘𝑚) + 1)) |
161 | 142 | simp3d 1146 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → (𝐺‘𝑚) ≤ 1) |
162 | 139, 158,
158, 161 | leadd1dd 11446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) + 1) ≤ (1 + 1)) |
163 | | df-2 11893 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
164 | 162, 163 | breqtrrdi 5095 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → ((𝐺‘𝑚) + 1) ≤ 2) |
165 | 130, 154,
156, 160, 164 | letrd 10989 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ≤ 2) |
166 | 84, 155 | elicc2i 13001 |
. . . . . 6
⊢ (𝑥 ∈ (-1[,]2) ↔ (𝑥 ∈ ℝ ∧ -1 ≤
𝑥 ∧ 𝑥 ≤ 2)) |
167 | 130, 152,
165, 166 | syl3anbrc 1345 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑥 ∈ (𝑇‘𝑚)) → 𝑥 ∈ (-1[,]2)) |
168 | 167 | rexlimdva2 3206 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ ℕ 𝑥 ∈ (𝑇‘𝑚) → 𝑥 ∈ (-1[,]2))) |
169 | 116, 168 | syl5bi 245 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ∪
𝑚 ∈ ℕ (𝑇‘𝑚) → 𝑥 ∈ (-1[,]2))) |
170 | 169 | ssrdv 3907 |
. 2
⊢ (𝜑 → ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2)) |
171 | 26, 115, 170 | 3jca 1130 |
1
⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆
∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪
𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) |