MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ectocld Structured version   Visualization version   GIF version

Theorem ectocld 8755
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocld.3 ((𝜒𝑥𝐵) → 𝜑)
Assertion
Ref Expression
ectocld ((𝜒𝐴𝑆) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocld
StepHypRef Expression
1 ectocld.3 . . . 4 ((𝜒𝑥𝐵) → 𝜑)
2 ectocl.2 . . . . 5 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
32eqcoms 2737 . . . 4 (𝐴 = [𝑥]𝑅 → (𝜑𝜓))
41, 3syl5ibcom 245 . . 3 ((𝜒𝑥𝐵) → (𝐴 = [𝑥]𝑅𝜓))
54rexlimdva 3134 . 2 (𝜒 → (∃𝑥𝐵 𝐴 = [𝑥]𝑅𝜓))
6 elqsi 8739 . . 3 (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
7 ectocl.1 . . 3 𝑆 = (𝐵 / 𝑅)
86, 7eleq2s 2846 . 2 (𝐴𝑆 → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
95, 8impel 505 1 ((𝜒𝐴𝑆) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  [cec 8669   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-qs 8677
This theorem is referenced by:  ectocl  8756  elqsn0  8757  qsdisj  8767  qsel  8769  eqgen  19113  orbsta  19245  sylow1lem3  19530  sylow2alem2  19548  sylow2a  19549  sylow2blem2  19551  frgpup1  19705  frgpup3lem  19707  quscrng  21193  pi1xfr  24955  pi1coghm  24961  vitalilem3  25511  qsdisjALTV  38606  eqvrelqsel  38607
  Copyright terms: Public domain W3C validator