MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ectocld Structured version   Visualization version   GIF version

Theorem ectocld 8716
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocld.3 ((𝜒𝑥𝐵) → 𝜑)
Assertion
Ref Expression
ectocld ((𝜒𝐴𝑆) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocld
StepHypRef Expression
1 ectocld.3 . . . 4 ((𝜒𝑥𝐵) → 𝜑)
2 ectocl.2 . . . . 5 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
32eqcoms 2737 . . . 4 (𝐴 = [𝑥]𝑅 → (𝜑𝜓))
41, 3syl5ibcom 245 . . 3 ((𝜒𝑥𝐵) → (𝐴 = [𝑥]𝑅𝜓))
54rexlimdva 3130 . 2 (𝜒 → (∃𝑥𝐵 𝐴 = [𝑥]𝑅𝜓))
6 elqsi 8700 . . 3 (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
7 ectocl.1 . . 3 𝑆 = (𝐵 / 𝑅)
86, 7eleq2s 2846 . 2 (𝐴𝑆 → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
95, 8impel 505 1 ((𝜒𝐴𝑆) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  [cec 8630   / cqs 8631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-qs 8638
This theorem is referenced by:  ectocl  8717  elqsn0  8718  qsdisj  8728  qsel  8730  eqgen  19078  orbsta  19210  sylow1lem3  19497  sylow2alem2  19515  sylow2a  19516  sylow2blem2  19518  frgpup1  19672  frgpup3lem  19674  quscrng  21208  pi1xfr  24971  pi1coghm  24977  vitalilem3  25527  qsdisjALTV  38591  eqvrelqsel  38592
  Copyright terms: Public domain W3C validator