MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ectocld Structured version   Visualization version   GIF version

Theorem ectocld 8573
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocld.3 ((𝜒𝑥𝐵) → 𝜑)
Assertion
Ref Expression
ectocld ((𝜒𝐴𝑆) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocld
StepHypRef Expression
1 ectocld.3 . . . 4 ((𝜒𝑥𝐵) → 𝜑)
2 ectocl.2 . . . . 5 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
32eqcoms 2746 . . . 4 (𝐴 = [𝑥]𝑅 → (𝜑𝜓))
41, 3syl5ibcom 244 . . 3 ((𝜒𝑥𝐵) → (𝐴 = [𝑥]𝑅𝜓))
54rexlimdva 3213 . 2 (𝜒 → (∃𝑥𝐵 𝐴 = [𝑥]𝑅𝜓))
6 elqsi 8559 . . 3 (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
7 ectocl.1 . . 3 𝑆 = (𝐵 / 𝑅)
86, 7eleq2s 2857 . 2 (𝐴𝑆 → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
95, 8impel 506 1 ((𝜒𝐴𝑆) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-qs 8504
This theorem is referenced by:  ectocl  8574  elqsn0  8575  qsdisj  8583  qsel  8585  eqgen  18809  orbsta  18919  sylow1lem3  19205  sylow2alem2  19223  sylow2a  19224  sylow2blem2  19226  frgpup1  19381  frgpup3lem  19383  quscrng  20511  pi1xfr  24218  pi1coghm  24224  vitalilem3  24774  qsdisjALTV  36728  eqvrelqsel  36729
  Copyright terms: Public domain W3C validator