| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ectocld | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
| ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ectocld.3 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
| 2 | ectocl.2 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | eqcoms 2743 | . . . 4 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | syl5ibcom 245 | . . 3 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
| 5 | 4 | rexlimdva 3141 | . 2 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
| 6 | elqsi 8784 | . . 3 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
| 7 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
| 8 | 6, 7 | eleq2s 2852 | . 2 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
| 9 | 5, 8 | impel 505 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 [cec 8717 / cqs 8718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-qs 8725 |
| This theorem is referenced by: ectocl 8799 elqsn0 8800 qsdisj 8808 qsel 8810 eqgen 19164 orbsta 19296 sylow1lem3 19581 sylow2alem2 19599 sylow2a 19600 sylow2blem2 19602 frgpup1 19756 frgpup3lem 19758 quscrng 21244 pi1xfr 25006 pi1coghm 25012 vitalilem3 25563 qsdisjALTV 38633 eqvrelqsel 38634 |
| Copyright terms: Public domain | W3C validator |