Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ectocld | Structured version Visualization version GIF version |
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ectocld.3 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
2 | ectocl.2 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | eqcoms 2746 | . . . 4 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
4 | 1, 3 | syl5ibcom 244 | . . 3 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
5 | 4 | rexlimdva 3213 | . 2 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
6 | elqsi 8559 | . . 3 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
7 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
8 | 6, 7 | eleq2s 2857 | . 2 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
9 | 5, 8 | impel 506 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 [cec 8496 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-qs 8504 |
This theorem is referenced by: ectocl 8574 elqsn0 8575 qsdisj 8583 qsel 8585 eqgen 18809 orbsta 18919 sylow1lem3 19205 sylow2alem2 19223 sylow2a 19224 sylow2blem2 19226 frgpup1 19381 frgpup3lem 19383 quscrng 20511 pi1xfr 24218 pi1coghm 24224 vitalilem3 24774 qsdisjALTV 36728 eqvrelqsel 36729 |
Copyright terms: Public domain | W3C validator |