| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ectocld | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
| ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ectocld.3 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
| 2 | ectocl.2 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | eqcoms 2741 | . . . 4 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | syl5ibcom 245 | . . 3 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
| 5 | 4 | rexlimdva 3134 | . 2 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
| 6 | elqsi 8696 | . . 3 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
| 7 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
| 8 | 6, 7 | eleq2s 2851 | . 2 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
| 9 | 5, 8 | impel 505 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 [cec 8626 / cqs 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-qs 8634 |
| This theorem is referenced by: ectocl 8713 elqsn0 8714 qsdisj 8724 qsel 8726 eqgen 19095 orbsta 19227 sylow1lem3 19514 sylow2alem2 19532 sylow2a 19533 sylow2blem2 19535 frgpup1 19689 frgpup3lem 19691 quscrng 21222 pi1xfr 24983 pi1coghm 24989 vitalilem3 25539 qsdisjALTV 38731 eqvrelqsel 38732 |
| Copyright terms: Public domain | W3C validator |