![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ectocld | Structured version Visualization version GIF version |
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ectocld.3 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
2 | ectocl.2 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | eqcoms 2743 | . . . 4 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
4 | 1, 3 | syl5ibcom 245 | . . 3 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
5 | 4 | rexlimdva 3153 | . 2 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
6 | elqsi 8809 | . . 3 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
7 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
8 | 6, 7 | eleq2s 2857 | . 2 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
9 | 5, 8 | impel 505 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 [cec 8742 / cqs 8743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-qs 8750 |
This theorem is referenced by: ectocl 8824 elqsn0 8825 qsdisj 8833 qsel 8835 eqgen 19212 orbsta 19344 sylow1lem3 19633 sylow2alem2 19651 sylow2a 19652 sylow2blem2 19654 frgpup1 19808 frgpup3lem 19810 quscrng 21311 pi1xfr 25102 pi1coghm 25108 vitalilem3 25659 qsdisjALTV 38597 eqvrelqsel 38598 |
Copyright terms: Public domain | W3C validator |