| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ectocld | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
| ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ectocld.3 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
| 2 | ectocl.2 | . . . . 5 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | eqcoms 2737 | . . . 4 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | syl5ibcom 245 | . . 3 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
| 5 | 4 | rexlimdva 3130 | . 2 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
| 6 | elqsi 8700 | . . 3 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
| 7 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
| 8 | 6, 7 | eleq2s 2846 | . 2 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
| 9 | 5, 8 | impel 505 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 [cec 8630 / cqs 8631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-qs 8638 |
| This theorem is referenced by: ectocl 8717 elqsn0 8718 qsdisj 8728 qsel 8730 eqgen 19078 orbsta 19210 sylow1lem3 19497 sylow2alem2 19515 sylow2a 19516 sylow2blem2 19518 frgpup1 19672 frgpup3lem 19674 quscrng 21208 pi1xfr 24971 pi1coghm 24977 vitalilem3 25527 qsdisjALTV 38591 eqvrelqsel 38592 |
| Copyright terms: Public domain | W3C validator |