MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ee4anvOLD Structured version   Visualization version   GIF version

Theorem ee4anvOLD 2354
Description: Obsolete version of ee4anv 2353 as of 26-Oct-2025. (Contributed by NM, 31-Jul-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ee4anvOLD (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Distinct variable groups:   𝜑,𝑧   𝜑,𝑤   𝜓,𝑥   𝜓,𝑦   𝑦,𝑧   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem ee4anvOLD
StepHypRef Expression
1 excom 2162 . . 3 (∃𝑦𝑧𝑤(𝜑𝜓) ↔ ∃𝑧𝑦𝑤(𝜑𝜓))
21exbii 1848 . 2 (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ ∃𝑥𝑧𝑦𝑤(𝜑𝜓))
3 eeanv 2351 . . 3 (∃𝑦𝑤(𝜑𝜓) ↔ (∃𝑦𝜑 ∧ ∃𝑤𝜓))
432exbii 1849 . 2 (∃𝑥𝑧𝑦𝑤(𝜑𝜓) ↔ ∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓))
5 eeanv 2351 . 2 (∃𝑥𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
62, 4, 53bitri 297 1 (∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator