![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eeanv | Structured version Visualization version GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eeanv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1995 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1995 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | eean 2343 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∃wex 1852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-10 2174 ax-11 2190 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-ex 1853 df-nf 1858 |
This theorem is referenced by: eeeanv 2345 ee4anv 2346 2mo2 2699 cgsex2g 3391 cgsex4g 3392 vtocl2 3412 spc2egv 3446 dtru 4988 copsex2t 5084 copsex2g 5085 xpnz 5694 fununi 6104 wfrlem4 7570 wfrlem4OLD 7571 wfrfun 7578 tfrlem7 7632 ener 8156 domtr 8162 unen 8196 undom 8204 sbthlem10 8235 mapen 8280 infxpenc2 9045 fseqen 9050 dfac5lem4 9149 zorn2lem6 9525 fpwwe2lem12 9665 genpnnp 10029 hashfacen 13440 summo 14656 ntrivcvgmul 14841 prodmo 14873 iscatd2 16549 gictr 17925 gsumval3eu 18512 ptbasin 21601 txcls 21628 txbasval 21630 hmphtr 21807 reconn 22851 phtpcer 23014 pcohtpy 23039 mbfi1flimlem 23709 mbfmullem 23712 itg2add 23746 spc2ed 29652 brabgaf 29758 pconnconn 31551 txsconn 31561 frrlem4 32120 frrlem5c 32123 neibastop1 32691 bj-dtru 33133 riscer 34119 br1cosscnvxrn 34566 fnchoice 39710 fzisoeu 40031 stoweidlem35 40769 elsprel 42253 |
Copyright terms: Public domain | W3C validator |