|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > reean | Structured version Visualization version GIF version | ||
| Description: Rearrange restricted existential quantifiers. For a version based on fewer axioms see reeanv 3229. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) | 
| Ref | Expression | 
|---|---|
| reean.1 | ⊢ Ⅎ𝑦𝜑 | 
| reean.2 | ⊢ Ⅎ𝑥𝜓 | 
| Ref | Expression | 
|---|---|
| reean | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
| 2 | reean.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 1, 2 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) | 
| 4 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 5 | reean.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 4, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐵 ∧ 𝜓) | 
| 7 | 3, 6 | eean 2350 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) | 
| 8 | 7 | reeanlem 3228 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2108 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-ral 3062 df-rex 3071 | 
| This theorem is referenced by: disjrnmpt2 45193 | 
| Copyright terms: Public domain | W3C validator |