![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reean | Structured version Visualization version GIF version |
Description: Rearrange restricted existential quantifiers. For a version based on fewer axioms see reeanv 3218. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
reean.1 | ⊢ Ⅎ𝑦𝜑 |
reean.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
reean | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
2 | reean.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | 1, 2 | nfan 1894 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
4 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
5 | reean.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 4, 5 | nfan 1894 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐵 ∧ 𝜓) |
7 | 3, 6 | eean 2336 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) |
8 | 7 | reeanlem 3217 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 Ⅎwnf 1777 ∈ wcel 2098 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-11 2146 ax-12 2163 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-ral 3054 df-rex 3063 |
This theorem is referenced by: disjrnmpt2 44397 |
Copyright terms: Public domain | W3C validator |