Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reean | Structured version Visualization version GIF version |
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
reean.1 | ⊢ Ⅎ𝑦𝜑 |
reean.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
reean | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
2 | reean.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | 1, 2 | nfan 1903 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
4 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
5 | reean.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 4, 5 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐵 ∧ 𝜓) |
7 | 3, 6 | eean 2348 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) |
8 | 7 | reeanlem 3290 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-ral 3068 df-rex 3069 |
This theorem is referenced by: disjrnmpt2 42615 |
Copyright terms: Public domain | W3C validator |