| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of el 5397, shorter but requiring ax-sep 5251. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elALT | ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | selsALT 5399 | . 2 ⊢ (𝑥 ∈ V → ∃𝑦 𝑥 ∈ 𝑦) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |