MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elALT Structured version   Visualization version   GIF version

Theorem elALT 5358
Description: Alternate proof of el 5357, shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elALT 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem elALT
StepHypRef Expression
1 vex 3436 . . 3 𝑥 ∈ V
21snid 4597 . 2 𝑥 ∈ {𝑥}
3 snex 5354 . . 3 {𝑥} ∈ V
4 eleq2 2827 . . 3 (𝑦 = {𝑥} → (𝑥𝑦𝑥 ∈ {𝑥}))
53, 4spcev 3545 . 2 (𝑥 ∈ {𝑥} → ∃𝑦 𝑥𝑦)
62, 5ax-mp 5 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wex 1782  wcel 2106  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator