Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elALT | Structured version Visualization version GIF version |
Description: Alternate proof of el 5357, shorter but requiring more axioms. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elALT | ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4597 | . 2 ⊢ 𝑥 ∈ {𝑥} |
3 | snex 5354 | . . 3 ⊢ {𝑥} ∈ V | |
4 | eleq2 2827 | . . 3 ⊢ (𝑦 = {𝑥} → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ {𝑥})) | |
5 | 3, 4 | spcev 3545 | . 2 ⊢ (𝑥 ∈ {𝑥} → ∃𝑦 𝑥 ∈ 𝑦) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1782 ∈ wcel 2106 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |