| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of el 5375, shorter but requiring ax-sep 5229. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elALT | ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | selsALT 5377 | . 2 ⊢ (𝑥 ∈ V → ∃𝑦 𝑥 ∈ 𝑦) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4572 df-pr 4574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |