MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elALT Structured version   Visualization version   GIF version

Theorem elALT 5378
Description: Alternate proof of el 5375, shorter but requiring ax-sep 5229. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elALT 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem elALT
StepHypRef Expression
1 vex 3440 . 2 𝑥 ∈ V
2 selsALT 5377 . 2 (𝑥 ∈ V → ∃𝑦 𝑥𝑦)
31, 2ax-mp 5 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wex 1780  wcel 2111  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4572  df-pr 4574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator