MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elALT Structured version   Visualization version   GIF version

Theorem elALT 5440
Description: Alternate proof of el 5437, shorter but requiring ax-sep 5299. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elALT 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem elALT
StepHypRef Expression
1 vex 3477 . 2 𝑥 ∈ V
2 selsALT 5439 . 2 (𝑥 ∈ V → ∃𝑦 𝑥𝑦)
31, 2ax-mp 5 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wex 1780  wcel 2105  Vcvv 3473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-sn 4629  df-pr 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator