![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > selsALT | Structured version Visualization version GIF version |
Description: Alternate proof of sels 5437, requiring ax-sep 5298 but not using el 5436 (which is proved from it as elALT 5439). (especially when the proof of el 5436 is inlined in sels 5437). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5439. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
selsALT | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4661 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | snexg 5429 | . . 3 ⊢ (𝐴 ∈ {𝐴} → {𝐴} ∈ V) | |
3 | snidg 4661 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ {𝐴}) | |
4 | eleq2 2822 | . . 3 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
5 | 2, 3, 4 | spcedv 3588 | . 2 ⊢ (𝐴 ∈ {𝐴} → ∃𝑥 𝐴 ∈ 𝑥) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3952 df-sn 4628 df-pr 4630 |
This theorem is referenced by: elALT 5439 |
Copyright terms: Public domain | W3C validator |