MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selsALT Structured version   Visualization version   GIF version

Theorem selsALT 5386
Description: Alternate proof of sels 5385, requiring ax-sep 5238 but not using el 5384 (which is proved from it as elALT 5387). (especially when the proof of el 5384 is inlined in sels 5385). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5387. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
selsALT (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem selsALT
StepHypRef Expression
1 snidg 4614 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 snexg 5377 . . 3 (𝐴 ∈ {𝐴} → {𝐴} ∈ V)
3 snidg 4614 . . 3 (𝐴 ∈ {𝐴} → 𝐴 ∈ {𝐴})
4 eleq2 2817 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
52, 3, 4spcedv 3555 . 2 (𝐴 ∈ {𝐴} → ∃𝑥 𝐴𝑥)
61, 5syl 17 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2109  Vcvv 3438  {csn 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-sn 4580  df-pr 4582
This theorem is referenced by:  elALT  5387
  Copyright terms: Public domain W3C validator