![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > selsALT | Structured version Visualization version GIF version |
Description: Alternate proof of sels 5434, requiring ax-sep 5295 but not using el 5433 (which is proved from it as elALT 5436). (especially when the proof of el 5433 is inlined in sels 5434). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5436. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
selsALT | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4658 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | snexg 5426 | . . 3 ⊢ (𝐴 ∈ {𝐴} → {𝐴} ∈ V) | |
3 | snidg 4658 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ {𝐴}) | |
4 | eleq2 2823 | . . 3 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
5 | 2, 3, 4 | spcedv 3587 | . 2 ⊢ (𝐴 ∈ {𝐴} → ∃𝑥 𝐴 ∈ 𝑥) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 {csn 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5295 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3951 df-sn 4625 df-pr 4627 |
This theorem is referenced by: elALT 5436 |
Copyright terms: Public domain | W3C validator |