MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selsALT Structured version   Visualization version   GIF version

Theorem selsALT 5435
Description: Alternate proof of sels 5434, requiring ax-sep 5295 but not using el 5433 (which is proved from it as elALT 5436). (especially when the proof of el 5433 is inlined in sels 5434). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5436. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
selsALT (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem selsALT
StepHypRef Expression
1 snidg 4658 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 snexg 5426 . . 3 (𝐴 ∈ {𝐴} → {𝐴} ∈ V)
3 snidg 4658 . . 3 (𝐴 ∈ {𝐴} → 𝐴 ∈ {𝐴})
4 eleq2 2823 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
52, 3, 4spcedv 3587 . 2 (𝐴 ∈ {𝐴} → ∃𝑥 𝐴𝑥)
61, 5syl 17 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wcel 2107  Vcvv 3475  {csn 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5295  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3951  df-sn 4625  df-pr 4627
This theorem is referenced by:  elALT  5436
  Copyright terms: Public domain W3C validator