| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > selsALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of sels 5381, requiring ax-sep 5234 but not using el 5380 (which is proved from it as elALT 5383). (especially when the proof of el 5380 is inlined in sels 5381). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5383. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| selsALT | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4613 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | snexg 5373 | . . 3 ⊢ (𝐴 ∈ {𝐴} → {𝐴} ∈ V) | |
| 3 | snidg 4613 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ {𝐴}) | |
| 4 | eleq2 2820 | . . 3 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 5 | 2, 3, 4 | spcedv 3553 | . 2 ⊢ (𝐴 ∈ {𝐴} → ∃𝑥 𝐴 ∈ 𝑥) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: elALT 5383 |
| Copyright terms: Public domain | W3C validator |