MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selsALT Structured version   Visualization version   GIF version

Theorem selsALT 5438
Description: Alternate proof of sels 5437, requiring ax-sep 5298 but not using el 5436 (which is proved from it as elALT 5439). (especially when the proof of el 5436 is inlined in sels 5437). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5439. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
selsALT (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem selsALT
StepHypRef Expression
1 snidg 4661 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 snexg 5429 . . 3 (𝐴 ∈ {𝐴} → {𝐴} ∈ V)
3 snidg 4661 . . 3 (𝐴 ∈ {𝐴} → 𝐴 ∈ {𝐴})
4 eleq2 2822 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
52, 3, 4spcedv 3588 . 2 (𝐴 ∈ {𝐴} → ∃𝑥 𝐴𝑥)
61, 5syl 17 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1781  wcel 2106  Vcvv 3474  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3952  df-sn 4628  df-pr 4630
This theorem is referenced by:  elALT  5439
  Copyright terms: Public domain W3C validator