Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexab2 | Structured version Visualization version GIF version |
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) Drop ax-8 2107. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexab2 | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓)) | |
2 | nfsab1 2721 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑦 ∣ 𝜑} | |
3 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
4 | 2, 3 | nfan 1901 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) |
5 | nfv 1916 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜒) | |
6 | eleq1ab 2715 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
7 | abid 2717 | . . . . 5 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
8 | 6, 7 | bitrdi 286 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑)) |
9 | ralab2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
10 | 8, 9 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
11 | 4, 5, 10 | cbvexv1 2338 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
12 | 1, 11 | bitri 274 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 {cab 2713 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-rex 3071 |
This theorem is referenced by: rexrab2 3647 tmdgsum2 23345 clrellem 41540 brtrclfv2 41645 |
Copyright terms: Public domain | W3C validator |