![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexab2 | Structured version Visualization version GIF version |
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) Drop ax-8 2106. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexab2 | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓)) | |
2 | nfsab1 2715 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑦 ∣ 𝜑} | |
3 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
4 | 2, 3 | nfan 1900 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) |
5 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜒) | |
6 | eleq1ab 2709 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
7 | abid 2711 | . . . . 5 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
8 | 6, 7 | bitrdi 286 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑)) |
9 | ralab2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
10 | 8, 9 | anbi12d 629 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
11 | 4, 5, 10 | cbvexv1 2336 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
12 | 1, 11 | bitri 274 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∃wex 1779 ∈ wcel 2104 {cab 2707 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-rex 3069 |
This theorem is referenced by: rexrab2 3697 tmdgsum2 23822 clrellem 42677 brtrclfv2 42782 |
Copyright terms: Public domain | W3C validator |