MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexab2 Structured version   Visualization version   GIF version

Theorem rexab2 3705
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) Drop ax-8 2110. (Revised by GG, 1-Dec-2023.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
rexab2 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑦(𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem rexab2
StepHypRef Expression
1 df-rex 3071 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜓))
2 nfsab1 2722 . . . 4 𝑦 𝑥 ∈ {𝑦𝜑}
3 nfv 1914 . . . 4 𝑦𝜓
42, 3nfan 1899 . . 3 𝑦(𝑥 ∈ {𝑦𝜑} ∧ 𝜓)
5 nfv 1914 . . 3 𝑥(𝜑𝜒)
6 eleq1ab 2716 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝑦 ∈ {𝑦𝜑}))
7 abid 2718 . . . . 5 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
86, 7bitrdi 287 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝜑))
9 ralab2.1 . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
108, 9anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦𝜑} ∧ 𝜓) ↔ (𝜑𝜒)))
114, 5, 10cbvexv1 2344 . 2 (∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜓) ↔ ∃𝑦(𝜑𝜒))
121, 11bitri 275 1 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑦(𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2108  {cab 2714  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-rex 3071
This theorem is referenced by:  rexrab2  3706  tmdgsum2  24104  clrellem  43635  brtrclfv2  43740
  Copyright terms: Public domain W3C validator