| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexab2 | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) Drop ax-8 2115. (Revised by GG, 1-Dec-2023.) |
| Ref | Expression |
|---|---|
| ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexab2 | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓)) | |
| 2 | nfsab1 2719 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑦 ∣ 𝜑} | |
| 3 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 4 | 2, 3 | nfan 1900 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) |
| 5 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜒) | |
| 6 | eleq1ab 2713 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
| 7 | abid 2715 | . . . . 5 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 6, 7 | bitrdi 287 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑)) |
| 9 | ralab2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 10 | 8, 9 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| 11 | 4, 5, 10 | cbvexv1 2344 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 {cab 2711 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2146 ax-11 2162 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-rex 3058 |
| This theorem is referenced by: rexrab2 3655 tmdgsum2 24014 clrellem 43742 brtrclfv2 43847 |
| Copyright terms: Public domain | W3C validator |