![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegclALT | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11519. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
renegclALT | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11448 | . . 3 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ)) |
3 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | c0ex 11204 | . . . . . . 7 ⊢ 0 ∈ V | |
5 | 3, 4 | ifex 4577 | . . . . . 6 ⊢ if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V |
6 | csbnegg 11453 | . . . . . 6 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 |
8 | csbvarg 4430 | . . . . . . . . . . 11 ⊢ (0 ∈ V → ⦋0 / 𝑥⦌𝑥 = 0) | |
9 | 4, 8 | ax-mp 5 | . . . . . . . . . 10 ⊢ ⦋0 / 𝑥⦌𝑥 = 0 |
10 | 0re 11212 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
11 | 9, 10 | eqeltri 2829 | . . . . . . . . 9 ⊢ ⦋0 / 𝑥⦌𝑥 ∈ ℝ |
12 | sbcel1g 4412 | . . . . . . . . . 10 ⊢ (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ)) | |
13 | 4, 12 | ax-mp 5 | . . . . . . . . 9 ⊢ ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ) |
14 | 11, 13 | mpbir 230 | . . . . . . . 8 ⊢ [0 / 𝑥]𝑥 ∈ ℝ |
15 | 14 | elimhyps 37819 | . . . . . . 7 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ |
16 | sbcel1g 4412 | . . . . . . . 8 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ)) | |
17 | 5, 16 | ax-mp 5 | . . . . . . 7 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ) |
18 | 15, 17 | mpbi 229 | . . . . . 6 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
19 | 18 | renegcli 11517 | . . . . 5 ⊢ -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
20 | 7, 19 | eqeltri 2829 | . . . 4 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ |
21 | sbcel1g 4412 | . . . . 5 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ)) | |
22 | 5, 21 | ax-mp 5 | . . . 4 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ) |
23 | 20, 22 | mpbir 230 | . . 3 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ |
24 | 23 | dedths 37820 | . 2 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) |
25 | 2, 24 | vtoclga 3565 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 [wsbc 3776 ⦋csb 3892 ifcif 4527 ℝcr 11105 0cc0 11106 -cneg 11441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |