| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > renegclALT | Structured version Visualization version GIF version | ||
| Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11427. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| renegclALT | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11355 | . . 3 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ)) |
| 3 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 4 | c0ex 11109 | . . . . . . 7 ⊢ 0 ∈ V | |
| 5 | 3, 4 | ifex 4527 | . . . . . 6 ⊢ if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V |
| 6 | csbnegg 11360 | . . . . . 6 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 |
| 8 | csbvarg 4385 | . . . . . . . . . . 11 ⊢ (0 ∈ V → ⦋0 / 𝑥⦌𝑥 = 0) | |
| 9 | 4, 8 | ax-mp 5 | . . . . . . . . . 10 ⊢ ⦋0 / 𝑥⦌𝑥 = 0 |
| 10 | 0re 11117 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 11 | 9, 10 | eqeltri 2824 | . . . . . . . . 9 ⊢ ⦋0 / 𝑥⦌𝑥 ∈ ℝ |
| 12 | sbcel1g 4367 | . . . . . . . . . 10 ⊢ (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ)) | |
| 13 | 4, 12 | ax-mp 5 | . . . . . . . . 9 ⊢ ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ) |
| 14 | 11, 13 | mpbir 231 | . . . . . . . 8 ⊢ [0 / 𝑥]𝑥 ∈ ℝ |
| 15 | 14 | elimhyps 38940 | . . . . . . 7 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ |
| 16 | sbcel1g 4367 | . . . . . . . 8 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ)) | |
| 17 | 5, 16 | ax-mp 5 | . . . . . . 7 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ) |
| 18 | 15, 17 | mpbi 230 | . . . . . 6 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
| 19 | 18 | renegcli 11425 | . . . . 5 ⊢ -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
| 20 | 7, 19 | eqeltri 2824 | . . . 4 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ |
| 21 | sbcel1g 4367 | . . . . 5 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ)) | |
| 22 | 5, 21 | ax-mp 5 | . . . 4 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ) |
| 23 | 20, 22 | mpbir 231 | . . 3 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ |
| 24 | 23 | dedths 38941 | . 2 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) |
| 25 | 2, 24 | vtoclga 3532 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 [wsbc 3742 ⦋csb 3851 ifcif 4476 ℝcr 11008 0cc0 11009 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |