| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > renegclALT | Structured version Visualization version GIF version | ||
| Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11555. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| renegclALT | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11483 | . . 3 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ)) |
| 3 | vex 3468 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 4 | c0ex 11238 | . . . . . . 7 ⊢ 0 ∈ V | |
| 5 | 3, 4 | ifex 4558 | . . . . . 6 ⊢ if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V |
| 6 | csbnegg 11488 | . . . . . 6 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 |
| 8 | csbvarg 4416 | . . . . . . . . . . 11 ⊢ (0 ∈ V → ⦋0 / 𝑥⦌𝑥 = 0) | |
| 9 | 4, 8 | ax-mp 5 | . . . . . . . . . 10 ⊢ ⦋0 / 𝑥⦌𝑥 = 0 |
| 10 | 0re 11246 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 11 | 9, 10 | eqeltri 2829 | . . . . . . . . 9 ⊢ ⦋0 / 𝑥⦌𝑥 ∈ ℝ |
| 12 | sbcel1g 4398 | . . . . . . . . . 10 ⊢ (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ)) | |
| 13 | 4, 12 | ax-mp 5 | . . . . . . . . 9 ⊢ ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ) |
| 14 | 11, 13 | mpbir 231 | . . . . . . . 8 ⊢ [0 / 𝑥]𝑥 ∈ ℝ |
| 15 | 14 | elimhyps 38903 | . . . . . . 7 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ |
| 16 | sbcel1g 4398 | . . . . . . . 8 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ)) | |
| 17 | 5, 16 | ax-mp 5 | . . . . . . 7 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ) |
| 18 | 15, 17 | mpbi 230 | . . . . . 6 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
| 19 | 18 | renegcli 11553 | . . . . 5 ⊢ -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
| 20 | 7, 19 | eqeltri 2829 | . . . 4 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ |
| 21 | sbcel1g 4398 | . . . . 5 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ)) | |
| 22 | 5, 21 | ax-mp 5 | . . . 4 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ) |
| 23 | 20, 22 | mpbir 231 | . . 3 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ |
| 24 | 23 | dedths 38904 | . 2 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) |
| 25 | 2, 24 | vtoclga 3561 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3464 [wsbc 3772 ⦋csb 3881 ifcif 4507 ℝcr 11137 0cc0 11138 -cneg 11476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sub 11477 df-neg 11478 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |