Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegclALT Structured version   Visualization version   GIF version

Theorem renegclALT 36977
Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11284. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
renegclALT (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 negeq 11213 . . 3 (𝑥 = 𝐴 → -𝑥 = -𝐴)
21eleq1d 2823 . 2 (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
3 vex 3436 . . . . . . 7 𝑥 ∈ V
4 c0ex 10969 . . . . . . 7 0 ∈ V
53, 4ifex 4509 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V
6 csbnegg 11218 . . . . . 6 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥)
75, 6ax-mp 5 . . . . 5 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥
8 csbvarg 4365 . . . . . . . . . . 11 (0 ∈ V → 0 / 𝑥𝑥 = 0)
94, 8ax-mp 5 . . . . . . . . . 10 0 / 𝑥𝑥 = 0
10 0re 10977 . . . . . . . . . 10 0 ∈ ℝ
119, 10eqeltri 2835 . . . . . . . . 9 0 / 𝑥𝑥 ∈ ℝ
12 sbcel1g 4347 . . . . . . . . . 10 (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ))
134, 12ax-mp 5 . . . . . . . . 9 ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ)
1411, 13mpbir 230 . . . . . . . 8 [0 / 𝑥]𝑥 ∈ ℝ
1514elimhyps 36975 . . . . . . 7 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ
16 sbcel1g 4347 . . . . . . . 8 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ))
175, 16ax-mp 5 . . . . . . 7 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ)
1815, 17mpbi 229 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
1918renegcli 11282 . . . . 5 -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
207, 19eqeltri 2835 . . . 4 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ
21 sbcel1g 4347 . . . . 5 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ))
225, 21ax-mp 5 . . . 4 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ)
2320, 22mpbir 230 . . 3 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ
2423dedths 36976 . 2 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
252, 24vtoclga 3513 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  [wsbc 3716  csb 3832  ifcif 4459  cr 10870  0cc0 10871  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator