Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegclALT | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11214. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
renegclALT | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11143 | . . 3 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ)) |
3 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | c0ex 10900 | . . . . . . 7 ⊢ 0 ∈ V | |
5 | 3, 4 | ifex 4506 | . . . . . 6 ⊢ if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V |
6 | csbnegg 11148 | . . . . . 6 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 = -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 |
8 | csbvarg 4362 | . . . . . . . . . . 11 ⊢ (0 ∈ V → ⦋0 / 𝑥⦌𝑥 = 0) | |
9 | 4, 8 | ax-mp 5 | . . . . . . . . . 10 ⊢ ⦋0 / 𝑥⦌𝑥 = 0 |
10 | 0re 10908 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
11 | 9, 10 | eqeltri 2835 | . . . . . . . . 9 ⊢ ⦋0 / 𝑥⦌𝑥 ∈ ℝ |
12 | sbcel1g 4344 | . . . . . . . . . 10 ⊢ (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ)) | |
13 | 4, 12 | ax-mp 5 | . . . . . . . . 9 ⊢ ([0 / 𝑥]𝑥 ∈ ℝ ↔ ⦋0 / 𝑥⦌𝑥 ∈ ℝ) |
14 | 11, 13 | mpbir 230 | . . . . . . . 8 ⊢ [0 / 𝑥]𝑥 ∈ ℝ |
15 | 14 | elimhyps 36902 | . . . . . . 7 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ |
16 | sbcel1g 4344 | . . . . . . . 8 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ)) | |
17 | 5, 16 | ax-mp 5 | . . . . . . 7 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ) |
18 | 15, 17 | mpbi 229 | . . . . . 6 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
19 | 18 | renegcli 11212 | . . . . 5 ⊢ -⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌𝑥 ∈ ℝ |
20 | 7, 19 | eqeltri 2835 | . . . 4 ⊢ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ |
21 | sbcel1g 4344 | . . . . 5 ⊢ (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ)) | |
22 | 5, 21 | ax-mp 5 | . . . 4 ⊢ ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ ⦋if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥⦌-𝑥 ∈ ℝ) |
23 | 20, 22 | mpbir 230 | . . 3 ⊢ [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ |
24 | 23 | dedths 36903 | . 2 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) |
25 | 2, 24 | vtoclga 3503 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 ⦋csb 3828 ifcif 4456 ℝcr 10801 0cc0 10802 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |