Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegclALT Structured version   Visualization version   GIF version

Theorem renegclALT 36904
Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11214. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
renegclALT (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 negeq 11143 . . 3 (𝑥 = 𝐴 → -𝑥 = -𝐴)
21eleq1d 2823 . 2 (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
3 vex 3426 . . . . . . 7 𝑥 ∈ V
4 c0ex 10900 . . . . . . 7 0 ∈ V
53, 4ifex 4506 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V
6 csbnegg 11148 . . . . . 6 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥)
75, 6ax-mp 5 . . . . 5 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥
8 csbvarg 4362 . . . . . . . . . . 11 (0 ∈ V → 0 / 𝑥𝑥 = 0)
94, 8ax-mp 5 . . . . . . . . . 10 0 / 𝑥𝑥 = 0
10 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
119, 10eqeltri 2835 . . . . . . . . 9 0 / 𝑥𝑥 ∈ ℝ
12 sbcel1g 4344 . . . . . . . . . 10 (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ))
134, 12ax-mp 5 . . . . . . . . 9 ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ)
1411, 13mpbir 230 . . . . . . . 8 [0 / 𝑥]𝑥 ∈ ℝ
1514elimhyps 36902 . . . . . . 7 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ
16 sbcel1g 4344 . . . . . . . 8 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ))
175, 16ax-mp 5 . . . . . . 7 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ)
1815, 17mpbi 229 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
1918renegcli 11212 . . . . 5 -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
207, 19eqeltri 2835 . . . 4 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ
21 sbcel1g 4344 . . . . 5 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ))
225, 21ax-mp 5 . . . 4 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ)
2320, 22mpbir 230 . . 3 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ
2423dedths 36903 . 2 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
252, 24vtoclga 3503 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711  csb 3828  ifcif 4456  cr 10801  0cc0 10802  -cneg 11136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator