Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegclALT Structured version   Visualization version   GIF version

Theorem renegclALT 38490
Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11551. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
renegclALT (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 negeq 11480 . . 3 (𝑥 = 𝐴 → -𝑥 = -𝐴)
21eleq1d 2810 . 2 (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
3 vex 3467 . . . . . . 7 𝑥 ∈ V
4 c0ex 11236 . . . . . . 7 0 ∈ V
53, 4ifex 4574 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V
6 csbnegg 11485 . . . . . 6 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥)
75, 6ax-mp 5 . . . . 5 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥
8 csbvarg 4427 . . . . . . . . . . 11 (0 ∈ V → 0 / 𝑥𝑥 = 0)
94, 8ax-mp 5 . . . . . . . . . 10 0 / 𝑥𝑥 = 0
10 0re 11244 . . . . . . . . . 10 0 ∈ ℝ
119, 10eqeltri 2821 . . . . . . . . 9 0 / 𝑥𝑥 ∈ ℝ
12 sbcel1g 4409 . . . . . . . . . 10 (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ))
134, 12ax-mp 5 . . . . . . . . 9 ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ)
1411, 13mpbir 230 . . . . . . . 8 [0 / 𝑥]𝑥 ∈ ℝ
1514elimhyps 38488 . . . . . . 7 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ
16 sbcel1g 4409 . . . . . . . 8 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ))
175, 16ax-mp 5 . . . . . . 7 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ)
1815, 17mpbi 229 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
1918renegcli 11549 . . . . 5 -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
207, 19eqeltri 2821 . . . 4 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ
21 sbcel1g 4409 . . . . 5 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ))
225, 21ax-mp 5 . . . 4 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ)
2320, 22mpbir 230 . . 3 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ
2423dedths 38489 . 2 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
252, 24vtoclga 3556 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3463  [wsbc 3769  csb 3885  ifcif 4524  cr 11135  0cc0 11136  -cneg 11473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-ltxr 11281  df-sub 11474  df-neg 11475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator