Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegclALT Structured version   Visualization version   GIF version

Theorem renegclALT 38905
Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11555. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
renegclALT (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 negeq 11483 . . 3 (𝑥 = 𝐴 → -𝑥 = -𝐴)
21eleq1d 2818 . 2 (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
3 vex 3468 . . . . . . 7 𝑥 ∈ V
4 c0ex 11238 . . . . . . 7 0 ∈ V
53, 4ifex 4558 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V
6 csbnegg 11488 . . . . . 6 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥)
75, 6ax-mp 5 . . . . 5 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥
8 csbvarg 4416 . . . . . . . . . . 11 (0 ∈ V → 0 / 𝑥𝑥 = 0)
94, 8ax-mp 5 . . . . . . . . . 10 0 / 𝑥𝑥 = 0
10 0re 11246 . . . . . . . . . 10 0 ∈ ℝ
119, 10eqeltri 2829 . . . . . . . . 9 0 / 𝑥𝑥 ∈ ℝ
12 sbcel1g 4398 . . . . . . . . . 10 (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ))
134, 12ax-mp 5 . . . . . . . . 9 ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ)
1411, 13mpbir 231 . . . . . . . 8 [0 / 𝑥]𝑥 ∈ ℝ
1514elimhyps 38903 . . . . . . 7 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ
16 sbcel1g 4398 . . . . . . . 8 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ))
175, 16ax-mp 5 . . . . . . 7 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ)
1815, 17mpbi 230 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
1918renegcli 11553 . . . . 5 -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
207, 19eqeltri 2829 . . . 4 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ
21 sbcel1g 4398 . . . . 5 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ))
225, 21ax-mp 5 . . . 4 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ)
2320, 22mpbir 231 . . 3 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ
2423dedths 38904 . 2 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
252, 24vtoclga 3561 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  Vcvv 3464  [wsbc 3772  csb 3881  ifcif 4507  cr 11137  0cc0 11138  -cneg 11476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-sub 11477  df-neg 11478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator