Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegclALT Structured version   Visualization version   GIF version

Theorem renegclALT 38346
Description: Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 11527. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
renegclALT (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)

Proof of Theorem renegclALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 negeq 11456 . . 3 (𝑥 = 𝐴 → -𝑥 = -𝐴)
21eleq1d 2812 . 2 (𝑥 = 𝐴 → (-𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
3 vex 3472 . . . . . . 7 𝑥 ∈ V
4 c0ex 11212 . . . . . . 7 0 ∈ V
53, 4ifex 4573 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V
6 csbnegg 11461 . . . . . 6 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥)
75, 6ax-mp 5 . . . . 5 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 = -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥
8 csbvarg 4426 . . . . . . . . . . 11 (0 ∈ V → 0 / 𝑥𝑥 = 0)
94, 8ax-mp 5 . . . . . . . . . 10 0 / 𝑥𝑥 = 0
10 0re 11220 . . . . . . . . . 10 0 ∈ ℝ
119, 10eqeltri 2823 . . . . . . . . 9 0 / 𝑥𝑥 ∈ ℝ
12 sbcel1g 4408 . . . . . . . . . 10 (0 ∈ V → ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ))
134, 12ax-mp 5 . . . . . . . . 9 ([0 / 𝑥]𝑥 ∈ ℝ ↔ 0 / 𝑥𝑥 ∈ ℝ)
1411, 13mpbir 230 . . . . . . . 8 [0 / 𝑥]𝑥 ∈ ℝ
1514elimhyps 38344 . . . . . . 7 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ
16 sbcel1g 4408 . . . . . . . 8 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ))
175, 16ax-mp 5 . . . . . . 7 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ)
1815, 17mpbi 229 . . . . . 6 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
1918renegcli 11525 . . . . 5 -if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥𝑥 ∈ ℝ
207, 19eqeltri 2823 . . . 4 if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ
21 sbcel1g 4408 . . . . 5 (if(𝑥 ∈ ℝ, 𝑥, 0) ∈ V → ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ))
225, 21ax-mp 5 . . . 4 ([if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ ↔ if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥-𝑥 ∈ ℝ)
2320, 22mpbir 230 . . 3 [if(𝑥 ∈ ℝ, 𝑥, 0) / 𝑥]-𝑥 ∈ ℝ
2423dedths 38345 . 2 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
252, 24vtoclga 3560 1 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3468  [wsbc 3772  csb 3888  ifcif 4523  cr 11111  0cc0 11112  -cneg 11449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-sub 11450  df-neg 11451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator