Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elimhyps Structured version   Visualization version   GIF version

Theorem elimhyps 35115
Description: A version of elimhyp 4370 using explicit substitution. (Contributed by NM, 15-Jun-2019.)
Hypothesis
Ref Expression
elimhyps.1 [𝐵 / 𝑥]𝜑
Assertion
Ref Expression
elimhyps [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑

Proof of Theorem elimhyps
StepHypRef Expression
1 sbceq1a 3663 . 2 (𝑥 = if(𝜑, 𝑥, 𝐵) → (𝜑[if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑))
2 dfsbcq 3654 . 2 (𝐵 = if(𝜑, 𝑥, 𝐵) → ([𝐵 / 𝑥]𝜑[if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑))
3 elimhyps.1 . 2 [𝐵 / 𝑥]𝜑
41, 2, 3elimhyp 4370 1 [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  [wsbc 3652  ifcif 4307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-sbc 3653  df-if 4308
This theorem is referenced by:  renegclALT  35117
  Copyright terms: Public domain W3C validator