| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elimhyps | Structured version Visualization version GIF version | ||
| Description: A version of elimhyp 4539 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
| Ref | Expression |
|---|---|
| elimhyps.1 | ⊢ [𝐵 / 𝑥]𝜑 |
| Ref | Expression |
|---|---|
| elimhyps | ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1a 3750 | . 2 ⊢ (𝑥 = if(𝜑, 𝑥, 𝐵) → (𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
| 2 | dfsbcq 3741 | . 2 ⊢ (𝐵 = if(𝜑, 𝑥, 𝐵) → ([𝐵 / 𝑥]𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
| 3 | elimhyps.1 | . 2 ⊢ [𝐵 / 𝑥]𝜑 | |
| 4 | 1, 2, 3 | elimhyp 4539 | 1 ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: [wsbc 3739 ifcif 4473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3740 df-if 4474 |
| This theorem is referenced by: renegclALT 38981 |
| Copyright terms: Public domain | W3C validator |