| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elimhyps | Structured version Visualization version GIF version | ||
| Description: A version of elimhyp 4542 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
| Ref | Expression |
|---|---|
| elimhyps.1 | ⊢ [𝐵 / 𝑥]𝜑 |
| Ref | Expression |
|---|---|
| elimhyps | ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1a 3749 | . 2 ⊢ (𝑥 = if(𝜑, 𝑥, 𝐵) → (𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
| 2 | dfsbcq 3740 | . 2 ⊢ (𝐵 = if(𝜑, 𝑥, 𝐵) → ([𝐵 / 𝑥]𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
| 3 | elimhyps.1 | . 2 ⊢ [𝐵 / 𝑥]𝜑 | |
| 4 | 1, 2, 3 | elimhyp 4542 | 1 ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: [wsbc 3738 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3739 df-if 4477 |
| This theorem is referenced by: renegclALT 39072 |
| Copyright terms: Public domain | W3C validator |