Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimhyps | Structured version Visualization version GIF version |
Description: A version of elimhyp 4476 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
Ref | Expression |
---|---|
elimhyps.1 | ⊢ [𝐵 / 𝑥]𝜑 |
Ref | Expression |
---|---|
elimhyps | ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 3690 | . 2 ⊢ (𝑥 = if(𝜑, 𝑥, 𝐵) → (𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
2 | dfsbcq 3681 | . 2 ⊢ (𝐵 = if(𝜑, 𝑥, 𝐵) → ([𝐵 / 𝑥]𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
3 | elimhyps.1 | . 2 ⊢ [𝐵 / 𝑥]𝜑 | |
4 | 1, 2, 3 | elimhyp 4476 | 1 ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: [wsbc 3679 ifcif 4411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-sbc 3680 df-if 4412 |
This theorem is referenced by: renegclALT 36589 |
Copyright terms: Public domain | W3C validator |