![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimhyps | Structured version Visualization version GIF version |
Description: A version of elimhyp 4370 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
Ref | Expression |
---|---|
elimhyps.1 | ⊢ [𝐵 / 𝑥]𝜑 |
Ref | Expression |
---|---|
elimhyps | ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 3663 | . 2 ⊢ (𝑥 = if(𝜑, 𝑥, 𝐵) → (𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
2 | dfsbcq 3654 | . 2 ⊢ (𝐵 = if(𝜑, 𝑥, 𝐵) → ([𝐵 / 𝑥]𝜑 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑)) | |
3 | elimhyps.1 | . 2 ⊢ [𝐵 / 𝑥]𝜑 | |
4 | 1, 2, 3 | elimhyp 4370 | 1 ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: [wsbc 3652 ifcif 4307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-sbc 3653 df-if 4308 |
This theorem is referenced by: renegclALT 35117 |
Copyright terms: Public domain | W3C validator |