Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintdv Structured version   Visualization version   GIF version

Theorem elintdv 42518
Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
elintdv.1 (𝜑𝐴𝑉)
elintdv.2 ((𝜑𝑥𝐵) → 𝐴𝑥)
Assertion
Ref Expression
elintdv (𝜑𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elintdv
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
2 elintdv.1 . 2 (𝜑𝐴𝑉)
3 elintdv.2 . 2 ((𝜑𝑥𝐵) → 𝐴𝑥)
41, 2, 3elintd 42513 1 (𝜑𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-int 4877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator