| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elintdv | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| elintdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elintdv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) |
| Ref | Expression |
|---|---|
| elintdv | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | elintdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elintdv.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) | |
| 4 | 1, 2, 3 | elintd 45052 | 1 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cint 4944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-int 4945 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |