![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuniint | Structured version Visualization version GIF version |
Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ssuniint.x | ⊢ Ⅎ𝑥𝜑 |
ssuniint.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ssuniint.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) |
Ref | Expression |
---|---|
ssuniint | ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuniint.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ssuniint.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ssuniint.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) | |
4 | 1, 2, 3 | elintd 44338 | . 2 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
5 | elssuni 4934 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 → 𝐴 ⊆ ∪ ∩ 𝐵) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1777 ∈ wcel 2098 ⊆ wss 3943 ∪ cuni 4902 ∩ cint 4943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-v 3470 df-in 3950 df-ss 3960 df-uni 4903 df-int 4944 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |