| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuniint | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| ssuniint.x | ⊢ Ⅎ𝑥𝜑 |
| ssuniint.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ssuniint.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) |
| Ref | Expression |
|---|---|
| ssuniint | ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssuniint.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssuniint.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | ssuniint.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) | |
| 4 | 1, 2, 3 | elintd 45061 | . 2 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
| 5 | elssuni 4903 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 → 𝐴 ⊆ ∪ ∩ 𝐵) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ⊆ wss 3916 ∪ cuni 4873 ∩ cint 4912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3933 df-uni 4874 df-int 4913 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |