Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssuniint Structured version   Visualization version   GIF version

Theorem ssuniint 45055
Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
ssuniint.x 𝑥𝜑
ssuniint.a (𝜑𝐴𝑉)
ssuniint.b ((𝜑𝑥𝐵) → 𝐴𝑥)
Assertion
Ref Expression
ssuniint (𝜑𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ssuniint
StepHypRef Expression
1 ssuniint.x . . 3 𝑥𝜑
2 ssuniint.a . . 3 (𝜑𝐴𝑉)
3 ssuniint.b . . 3 ((𝜑𝑥𝐵) → 𝐴𝑥)
41, 2, 3elintd 45051 . 2 (𝜑𝐴 𝐵)
5 elssuni 4917 . 2 (𝐴 𝐵𝐴 𝐵)
64, 5syl 17 1 (𝜑𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1782  wcel 2107  wss 3931   cuni 4887   cint 4926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-v 3465  df-ss 3948  df-uni 4888  df-int 4927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator