Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssuniint | Structured version Visualization version GIF version |
Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ssuniint.x | ⊢ Ⅎ𝑥𝜑 |
ssuniint.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ssuniint.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) |
Ref | Expression |
---|---|
ssuniint | ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuniint.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ssuniint.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ssuniint.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) | |
4 | 1, 2, 3 | elintd 42624 | . 2 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
5 | elssuni 4871 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 → 𝐴 ⊆ ∪ ∩ 𝐵) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-int 4880 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |