Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssuniint Structured version   Visualization version   GIF version

Theorem ssuniint 42517
Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
ssuniint.x 𝑥𝜑
ssuniint.a (𝜑𝐴𝑉)
ssuniint.b ((𝜑𝑥𝐵) → 𝐴𝑥)
Assertion
Ref Expression
ssuniint (𝜑𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ssuniint
StepHypRef Expression
1 ssuniint.x . . 3 𝑥𝜑
2 ssuniint.a . . 3 (𝜑𝐴𝑉)
3 ssuniint.b . . 3 ((𝜑𝑥𝐵) → 𝐴𝑥)
41, 2, 3elintd 42513 . 2 (𝜑𝐴 𝐵)
5 elssuni 4868 . 2 (𝐴 𝐵𝐴 𝐵)
64, 5syl 17 1 (𝜑𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1787  wcel 2108  wss 3883   cuni 4836   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-int 4877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator