Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintd Structured version   Visualization version   GIF version

Theorem elintd 42513
Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
elintd.1 𝑥𝜑
elintd.2 (𝜑𝐴𝑉)
elintd.3 ((𝜑𝑥𝐵) → 𝐴𝑥)
Assertion
Ref Expression
elintd (𝜑𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elintd
StepHypRef Expression
1 elintd.1 . . 3 𝑥𝜑
2 elintd.3 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝑥)
32ex 412 . . 3 (𝜑 → (𝑥𝐵𝐴𝑥))
41, 3ralrimi 3139 . 2 (𝜑 → ∀𝑥𝐵 𝐴𝑥)
5 elintd.2 . . 3 (𝜑𝐴𝑉)
6 elintg 4884 . . 3 (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
75, 6syl 17 . 2 (𝜑 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
84, 7mpbird 256 1 (𝜑𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1787  wcel 2108  wral 3063   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-int 4877
This theorem is referenced by:  ssuniint  42517  elintdv  42518
  Copyright terms: Public domain W3C validator