| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elintd | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| elintd.1 | ⊢ Ⅎ𝑥𝜑 |
| elintd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elintd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) |
| Ref | Expression |
|---|---|
| elintd | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | elintd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| 4 | 1, 3 | ralrimi 3230 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| 5 | elintd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | elintg 4903 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-int 4896 |
| This theorem is referenced by: ssuniint 45123 elintdv 45124 |
| Copyright terms: Public domain | W3C validator |