Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintd Structured version   Visualization version   GIF version

Theorem elintd 44440
Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
elintd.1 𝑥𝜑
elintd.2 (𝜑𝐴𝑉)
elintd.3 ((𝜑𝑥𝐵) → 𝐴𝑥)
Assertion
Ref Expression
elintd (𝜑𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elintd
StepHypRef Expression
1 elintd.1 . . 3 𝑥𝜑
2 elintd.3 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝑥)
32ex 412 . . 3 (𝜑 → (𝑥𝐵𝐴𝑥))
41, 3ralrimi 3251 . 2 (𝜑 → ∀𝑥𝐵 𝐴𝑥)
5 elintd.2 . . 3 (𝜑𝐴𝑉)
6 elintg 4957 . . 3 (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
75, 6syl 17 . 2 (𝜑 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
84, 7mpbird 257 1 (𝜑𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1778  wcel 2099  wral 3058   cint 4949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-int 4950
This theorem is referenced by:  ssuniint  44444  elintdv  44445
  Copyright terms: Public domain W3C validator