![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elintd | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
elintd.1 | ⊢ Ⅎ𝑥𝜑 |
elintd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elintd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) |
Ref | Expression |
---|---|
elintd | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | elintd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
4 | 1, 3 | ralrimi 3251 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
5 | elintd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | elintg 4957 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
8 | 4, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3058 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-int 4950 |
This theorem is referenced by: ssuniint 44444 elintdv 44445 |
Copyright terms: Public domain | W3C validator |