![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elintd | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
elintd.1 | ⊢ Ⅎ𝑥𝜑 |
elintd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elintd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) |
Ref | Expression |
---|---|
elintd | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | elintd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
4 | 1, 3 | ralrimi 3263 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
5 | elintd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | elintg 4978 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
8 | 4, 7 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-int 4971 |
This theorem is referenced by: ssuniint 44969 elintdv 44970 |
Copyright terms: Public domain | W3C validator |