![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabr | Structured version Visualization version GIF version |
Description: Membership in an ordered-pair class abstraction defined by a binary relation. (Contributed by AV, 16-Feb-2021.) (Proof shortened by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
elopabr | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabss 5212 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 | |
2 | 1 | sseli 3976 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-br 5149 df-opab 5211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |