MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabr Structured version   Visualization version   GIF version

Theorem elopabr 5447
Description: Membership in a class abstraction of pairs, defined by a binary relation. (Contributed by AV, 16-Feb-2021.)
Assertion
Ref Expression
elopabr (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴𝑅)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem elopabr
StepHypRef Expression
1 elopab 5414 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦))
2 df-br 5067 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
32biimpi 218 . . . . 5 (𝑥𝑅𝑦 → ⟨𝑥, 𝑦⟩ ∈ 𝑅)
4 eleq1 2900 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
53, 4syl5ibr 248 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝑅𝑦𝐴𝑅))
65imp 409 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴𝑅)
76exlimivv 1933 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴𝑅)
81, 7sylbi 219 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  cop 4573   class class class wbr 5066  {copab 5128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129
This theorem is referenced by:  elopabran  5448
  Copyright terms: Public domain W3C validator