Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabss | Structured version Visualization version GIF version |
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabss | ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)} | |
2 | df-br 5075 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
3 | eleq1 2826 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
4 | 3 | biimpar 478 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → 𝑧 ∈ 𝑅) |
5 | 2, 4 | sylan2b 594 | . . . 4 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
6 | 5 | exlimivv 1935 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
7 | 6 | abssi 4003 | . 2 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)} ⊆ 𝑅 |
8 | 1, 7 | eqsstri 3955 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ⊆ wss 3887 〈cop 4567 class class class wbr 5074 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 |
This theorem is referenced by: elopabr 5474 elopabran 5475 aceq3lem 9876 fullfunc 17622 fthfunc 17623 isfull 17626 isfth 17630 wksv 27986 |
Copyright terms: Public domain | W3C validator |