![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabss | Structured version Visualization version GIF version |
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabss | ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)} | |
2 | df-br 5167 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
3 | eleq1 2832 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
4 | 3 | biimpar 477 | . . . . 5 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → 𝑧 ∈ 𝑅) |
5 | 2, 4 | sylan2b 593 | . . . 4 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
6 | 5 | exlimivv 1931 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
7 | 6 | abssi 4093 | . 2 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)} ⊆ 𝑅 |
8 | 1, 7 | eqsstri 4043 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 |
This theorem is referenced by: elopabr 5580 elopabran 5581 mptmpoopabbrd 8121 aceq3lem 10189 fullfunc 17973 fthfunc 17974 isfull 17977 isfth 17981 wksv 29655 |
Copyright terms: Public domain | W3C validator |