![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabss | Structured version Visualization version GIF version |
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabss | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5212 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)} | |
2 | df-br 5150 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
3 | eleq1 2822 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) | |
4 | 3 | biimpar 479 | . . . . 5 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝑧 ∈ 𝑅) |
5 | 2, 4 | sylan2b 595 | . . . 4 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
6 | 5 | exlimivv 1936 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧 ∈ 𝑅) |
7 | 6 | abssi 4068 | . 2 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)} ⊆ 𝑅 |
8 | 1, 7 | eqsstri 4017 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ⊆ wss 3949 ⟨cop 4635 class class class wbr 5149 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-br 5150 df-opab 5212 |
This theorem is referenced by: elopabr 5562 elopabran 5563 aceq3lem 10115 fullfunc 17857 fthfunc 17858 isfull 17861 isfth 17865 wksv 28907 |
Copyright terms: Public domain | W3C validator |