![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunopabOLD | Structured version Visualization version GIF version |
Description: Obsolete version of iunopab 5555 as of 11-Dec-2024. (Contributed by Stefan O'Rear, 20-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iunopabOLD | ⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5523 | . . . . 5 ⊢ (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
2 | 1 | rexbii 3084 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
3 | rexcom4 3276 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
4 | rexcom4 3276 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
5 | r19.42v 3181 | . . . . . . . 8 ⊢ (∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) | |
6 | 5 | exbii 1842 | . . . . . . 7 ⊢ (∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
7 | 4, 6 | bitri 274 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
8 | 7 | exbii 1842 | . . . . 5 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
9 | 3, 8 | bitri 274 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
10 | 2, 9 | bitri 274 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
11 | 10 | abbii 2795 | . 2 ⊢ {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)} |
12 | df-iun 4993 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} | |
13 | df-opab 5206 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)} | |
14 | 11, 12, 13 | 3eqtr4i 2763 | 1 ⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 ∃wrex 3060 ⟨cop 4630 ∪ ciun 4991 {copab 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rex 3061 df-v 3465 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-iun 4993 df-opab 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |