![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunopabOLD | Structured version Visualization version GIF version |
Description: Obsolete version of iunopab 5559 as of 11-Dec-2024. (Contributed by Stefan O'Rear, 20-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iunopabOLD | ⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5527 | . . . . 5 ⊢ (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
2 | 1 | rexbii 3094 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
3 | rexcom4 3285 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
4 | rexcom4 3285 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
5 | r19.42v 3190 | . . . . . . . 8 ⊢ (∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) | |
6 | 5 | exbii 1850 | . . . . . . 7 ⊢ (∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
7 | 4, 6 | bitri 274 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
8 | 7 | exbii 1850 | . . . . 5 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
9 | 3, 8 | bitri 274 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
10 | 2, 9 | bitri 274 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
11 | 10 | abbii 2802 | . 2 ⊢ {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)} |
12 | df-iun 4999 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} | |
13 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)} | |
14 | 11, 12, 13 | 3eqtr4i 2770 | 1 ⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∃wrex 3070 ⟨cop 4634 ∪ ciun 4997 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-iun 4999 df-opab 5211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |