| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunopabOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of iunopab 5539 as of 11-Dec-2024. (Contributed by Stefan O'Rear, 20-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iunopabOLD | ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 5507 | . . . . 5 ⊢ (𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 2 | 1 | rexbii 3084 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| 3 | rexcom4 3273 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 4 | rexcom4 3273 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 5 | r19.42v 3177 | . . . . . . . 8 ⊢ (∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) | |
| 6 | 5 | exbii 1848 | . . . . . . 7 ⊢ (∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 7 | 4, 6 | bitri 275 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 8 | 7 | exbii 1848 | . . . . 5 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 9 | 3, 8 | bitri 275 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 10 | 2, 9 | bitri 275 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 11 | 10 | abbii 2803 | . 2 ⊢ {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)} |
| 12 | df-iun 4974 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}} | |
| 13 | df-opab 5187 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2769 | 1 ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∃wrex 3061 〈cop 4612 ∪ ciun 4972 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-iun 4974 df-opab 5187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |