Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elopabran | Structured version Visualization version GIF version |
Description: Membership in an ordered-pair class abstraction defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021.) |
Ref | Expression |
---|---|
elopabran | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} → 𝐴 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . 4 ⊢ ((𝑥𝑅𝑦 ∧ 𝜓) → 𝑥𝑅𝑦) | |
2 | 1 | ssopab2i 5406 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
3 | 2 | sseli 3874 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} → 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
4 | elopabr 5416 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} → 𝐴 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2113 class class class wbr 5031 {copab 5093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-br 5032 df-opab 5094 |
This theorem is referenced by: clwlkwlk 27716 |
Copyright terms: Public domain | W3C validator |