![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabran | Structured version Visualization version GIF version |
Description: Membership in an ordered-pair class abstraction defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021.) |
Ref | Expression |
---|---|
elopabran | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} → 𝐴 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑥𝑅𝑦 ∧ 𝜓) → 𝑥𝑅𝑦) | |
2 | 1 | ssopab2i 5540 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
3 | opabss 5202 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ⊆ 𝑅 | |
4 | 2, 3 | sstri 3983 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ⊆ 𝑅 |
5 | 4 | sseli 3970 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} → 𝐴 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 class class class wbr 5138 {copab 5200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 df-br 5139 df-opab 5201 |
This theorem is referenced by: opabresex2 7453 fvmptopab 7455 clwlkwlk 29501 |
Copyright terms: Public domain | W3C validator |