Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 608 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 2f1fvneq 7127 isocnv 7194 isocnv3 7196 f1oiso2 7216 xpexr2 7753 f1o2ndf1 7947 fnwelem 7956 omword 8377 oeword 8397 swoso 8505 xpf1o 8891 zorn2lem6 10241 ltapr 10785 ltord1 11484 pc11 16562 imasaddfnlem 17220 imasaddflem 17222 pslem 18271 mhmpropd 18417 frmdsssubm 18481 ghmsub 18823 gasubg 18889 invrpropd 19921 znfld 20749 cygznlem3 20758 mplcoe5lem 21221 evlseu 21274 cpmatmcl 21849 tgclb 22101 innei 22257 txcn 22758 txflf 23138 qustgplem 23253 clmsub4 24250 cfilresi 24440 volcn 24751 itg1addlem4 24844 itg1addlem4OLD 24845 dvlip 25138 plymullem1 25356 lgsdir2 26459 lgsdchr 26484 brbtwn2 27254 axcontlem7 27319 frgrncvvdeqlem8 28649 nvaddsub4 28998 hhcno 30245 hhcnf 30246 unopf1o 30257 counop 30262 afsval 32630 ontopbas 34596 onsuct0 34609 heicant 35791 ftc1anclem6 35834 equivbnd2 35929 ismtybndlem 35943 ismrer1 35975 iccbnd 35977 ghomco 36028 rngohomco 36111 rngoisocnv 36118 rngoisoco 36119 idlsubcl 36160 xihopellsmN 39247 dihopellsm 39248 mhphf 40265 dvconstbi 41905 imasetpreimafvbijlemf1 44808 fargshiftf1 44845 mgmhmpropd 45291 elpglem1 46368 |
Copyright terms: Public domain | W3C validator |