| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isocnv 7308 isocnv3 7310 f1oiso2 7330 xpexr2 7898 f1o2ndf1 8104 fnwelem 8113 omword 8537 oeword 8557 swoso 8708 xpf1o 9109 zorn2lem6 10461 ltapr 11005 ltord1 11711 pc11 16858 imasaddfnlem 17498 imasaddflem 17500 pslem 18538 mgmhmpropd 18632 mhmpropd 18726 frmdsssubm 18795 ghmsub 19163 gasubg 19241 invrpropd 20334 znfld 21477 cygznlem3 21486 mplcoe5lem 21953 evlseu 21997 cpmatmcl 22613 tgclb 22864 innei 23019 txcn 23520 txflf 23900 qustgplem 24015 clmsub4 25013 cfilresi 25202 volcn 25514 itg1addlem4 25607 dvlip 25905 plymullem1 26126 lgsdir2 27248 lgsdchr 27273 brbtwn2 28839 axcontlem7 28904 frgrncvvdeqlem8 30242 nvaddsub4 30593 hhcno 31840 hhcnf 31841 unopf1o 31852 counop 31857 mndlactf1o 32978 mndractf1o 32979 afsval 34669 ontopbas 36423 onsuct0 36436 heicant 37656 ftc1anclem6 37699 equivbnd2 37793 ismtybndlem 37807 ismrer1 37839 iccbnd 37841 ghomco 37892 rngohomco 37975 rngoisocnv 37982 rngoisoco 37983 idlsubcl 38024 xihopellsmN 41255 dihopellsm 41256 f1o2d2 42228 dvconstbi 44330 ovolval5lem3 46659 imasetpreimafvbijlemf1 47409 fargshiftf1 47446 upgrimtrlslem2 47909 elpglem1 49704 |
| Copyright terms: Public domain | W3C validator |