| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isocnv 7305 isocnv3 7307 f1oiso2 7327 xpexr2 7895 f1o2ndf1 8101 fnwelem 8110 omword 8534 oeword 8554 swoso 8705 xpf1o 9103 zorn2lem6 10454 ltapr 10998 ltord1 11704 pc11 16851 imasaddfnlem 17491 imasaddflem 17493 pslem 18531 mgmhmpropd 18625 mhmpropd 18719 frmdsssubm 18788 ghmsub 19156 gasubg 19234 invrpropd 20327 znfld 21470 cygznlem3 21479 mplcoe5lem 21946 evlseu 21990 cpmatmcl 22606 tgclb 22857 innei 23012 txcn 23513 txflf 23893 qustgplem 24008 clmsub4 25006 cfilresi 25195 volcn 25507 itg1addlem4 25600 dvlip 25898 plymullem1 26119 lgsdir2 27241 lgsdchr 27266 brbtwn2 28832 axcontlem7 28897 frgrncvvdeqlem8 30235 nvaddsub4 30586 hhcno 31833 hhcnf 31834 unopf1o 31845 counop 31850 mndlactf1o 32971 mndractf1o 32972 afsval 34662 ontopbas 36416 onsuct0 36429 heicant 37649 ftc1anclem6 37692 equivbnd2 37786 ismtybndlem 37800 ismrer1 37832 iccbnd 37834 ghomco 37885 rngohomco 37968 rngoisocnv 37975 rngoisoco 37976 idlsubcl 38017 xihopellsmN 41248 dihopellsm 41249 f1o2d2 42221 dvconstbi 44323 ovolval5lem3 46652 imasetpreimafvbijlemf1 47405 fargshiftf1 47442 upgrimtrlslem2 47905 elpglem1 49700 |
| Copyright terms: Public domain | W3C validator |