| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isocnv 7259 isocnv3 7261 f1oiso2 7281 xpexr2 7844 f1o2ndf1 8047 fnwelem 8056 omword 8480 oeword 8500 swoso 8651 xpf1o 9047 zorn2lem6 10384 ltapr 10928 ltord1 11635 pc11 16784 imasaddfnlem 17424 imasaddflem 17426 pslem 18470 mgmhmpropd 18598 mhmpropd 18692 frmdsssubm 18761 ghmsub 19129 gasubg 19207 invrpropd 20329 znfld 21490 cygznlem3 21499 mplcoe5lem 21967 evlseu 22011 cpmatmcl 22627 tgclb 22878 innei 23033 txcn 23534 txflf 23914 qustgplem 24029 clmsub4 25026 cfilresi 25215 volcn 25527 itg1addlem4 25620 dvlip 25918 plymullem1 26139 lgsdir2 27261 lgsdchr 27286 brbtwn2 28876 axcontlem7 28941 frgrncvvdeqlem8 30276 nvaddsub4 30627 hhcno 31874 hhcnf 31875 unopf1o 31886 counop 31891 mndlactf1o 33001 mndractf1o 33002 afsval 34674 ontopbas 36441 onsuct0 36454 heicant 37674 ftc1anclem6 37717 equivbnd2 37811 ismtybndlem 37825 ismrer1 37857 iccbnd 37859 ghomco 37910 rngohomco 37993 rngoisocnv 38000 rngoisoco 38001 idlsubcl 38042 xihopellsmN 41272 dihopellsm 41273 f1o2d2 42245 dvconstbi 44346 ovolval5lem3 46671 imasetpreimafvbijlemf1 47414 fargshiftf1 47451 upgrimtrlslem2 47915 elpglem1 49722 |
| Copyright terms: Public domain | W3C validator |