![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 402 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 402 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 603 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 396 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: 2f1fvneq 6745 isocnv 6808 isocnv3 6810 f1oiso2 6830 xpexr2 7342 f1o2ndf1 7522 fnwelem 7529 omword 7890 oeword 7910 swoso 8015 xpf1o 8364 zorn2lem6 9611 ltapr 10155 ltord1 10846 pc11 15917 imasaddfnlem 16503 imasaddflem 16505 pslem 17521 mhmpropd 17656 frmdsssubm 17714 ghmsub 17981 gasubg 18047 invrpropd 19014 mplcoe5lem 19790 evlseu 19838 znfld 20230 cygznlem3 20239 cpmatmcl 20852 tgclb 21103 innei 21258 txcn 21758 txflf 22138 qustgplem 22252 clmsub4 23233 cfilresi 23421 volcn 23714 itg1addlem4 23807 dvlip 24097 plymullem1 24311 lgsdir2 25407 lgsdchr 25432 brbtwn2 26142 axcontlem7 26207 frgrncvvdeqlem8 27655 nvaddsub4 28037 hhcno 29288 hhcnf 29289 unopf1o 29300 counop 29305 afsval 31269 ontopbas 32935 onsuct0 32948 heicant 33933 ftc1anclem6 33978 anim12da 33994 equivbnd2 34078 ismtybndlem 34092 ismrer1 34124 iccbnd 34126 xihopellsmN 37275 dihopellsm 37276 dvconstbi 39315 fargshiftf1 42217 mgmhmpropd 42584 elpglem1 43256 |
Copyright terms: Public domain | W3C validator |