| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isocnv 7328 isocnv3 7330 f1oiso2 7350 xpexr2 7920 f1o2ndf1 8126 fnwelem 8135 omword 8587 oeword 8607 swoso 8758 xpf1o 9158 zorn2lem6 10520 ltapr 11064 ltord1 11768 pc11 16905 imasaddfnlem 17547 imasaddflem 17549 pslem 18587 mgmhmpropd 18681 mhmpropd 18775 frmdsssubm 18844 ghmsub 19212 gasubg 19290 invrpropd 20383 znfld 21526 cygznlem3 21535 mplcoe5lem 22002 evlseu 22046 cpmatmcl 22662 tgclb 22913 innei 23068 txcn 23569 txflf 23949 qustgplem 24064 clmsub4 25062 cfilresi 25252 volcn 25564 itg1addlem4 25657 dvlip 25955 plymullem1 26176 lgsdir2 27298 lgsdchr 27323 brbtwn2 28889 axcontlem7 28954 frgrncvvdeqlem8 30292 nvaddsub4 30643 hhcno 31890 hhcnf 31891 unopf1o 31902 counop 31907 mndlactf1o 33030 mndractf1o 33031 afsval 34708 ontopbas 36451 onsuct0 36464 heicant 37684 ftc1anclem6 37727 equivbnd2 37821 ismtybndlem 37835 ismrer1 37867 iccbnd 37869 ghomco 37920 rngohomco 38003 rngoisocnv 38010 rngoisoco 38011 idlsubcl 38052 xihopellsmN 41278 dihopellsm 41279 f1o2d2 42251 dvconstbi 44333 ovolval5lem3 46663 imasetpreimafvbijlemf1 47398 fargshiftf1 47435 upgrimtrlslem2 47898 elpglem1 49555 |
| Copyright terms: Public domain | W3C validator |