![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 2f1fvneq 7280 isocnv 7350 isocnv3 7352 f1oiso2 7372 xpexr2 7942 f1o2ndf1 8146 fnwelem 8155 omword 8607 oeword 8627 swoso 8778 xpf1o 9178 zorn2lem6 10539 ltapr 11083 ltord1 11787 pc11 16914 imasaddfnlem 17575 imasaddflem 17577 pslem 18630 mgmhmpropd 18724 mhmpropd 18818 frmdsssubm 18887 ghmsub 19255 gasubg 19333 invrpropd 20435 znfld 21597 cygznlem3 21606 mplcoe5lem 22075 evlseu 22125 cpmatmcl 22741 tgclb 22993 innei 23149 txcn 23650 txflf 24030 qustgplem 24145 clmsub4 25153 cfilresi 25343 volcn 25655 itg1addlem4 25748 itg1addlem4OLD 25749 dvlip 26047 plymullem1 26268 lgsdir2 27389 lgsdchr 27414 brbtwn2 28935 axcontlem7 29000 frgrncvvdeqlem8 30335 nvaddsub4 30686 hhcno 31933 hhcnf 31934 unopf1o 31945 counop 31950 mndlactf1o 33018 mndractf1o 33019 afsval 34665 ontopbas 36411 onsuct0 36424 heicant 37642 ftc1anclem6 37685 equivbnd2 37779 ismtybndlem 37793 ismrer1 37825 iccbnd 37827 ghomco 37878 rngohomco 37961 rngoisocnv 37968 rngoisoco 37969 idlsubcl 38010 xihopellsmN 41237 dihopellsm 41238 f1o2d2 42253 dvconstbi 44330 ovolval5lem3 46610 imasetpreimafvbijlemf1 47329 fargshiftf1 47366 elpglem1 48942 |
Copyright terms: Public domain | W3C validator |