![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 608 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 2f1fvneq 7297 isocnv 7366 isocnv3 7368 f1oiso2 7388 xpexr2 7959 f1o2ndf1 8163 fnwelem 8172 omword 8626 oeword 8646 swoso 8797 xpf1o 9205 zorn2lem6 10570 ltapr 11114 ltord1 11816 pc11 16927 imasaddfnlem 17588 imasaddflem 17590 pslem 18642 mgmhmpropd 18736 mhmpropd 18827 frmdsssubm 18896 ghmsub 19264 gasubg 19342 invrpropd 20444 znfld 21602 cygznlem3 21611 mplcoe5lem 22080 evlseu 22130 cpmatmcl 22746 tgclb 22998 innei 23154 txcn 23655 txflf 24035 qustgplem 24150 clmsub4 25158 cfilresi 25348 volcn 25660 itg1addlem4 25753 itg1addlem4OLD 25754 dvlip 26052 plymullem1 26273 lgsdir2 27392 lgsdchr 27417 brbtwn2 28938 axcontlem7 29003 frgrncvvdeqlem8 30338 nvaddsub4 30689 hhcno 31936 hhcnf 31937 unopf1o 31948 counop 31953 mndlactf1o 33016 mndractf1o 33017 afsval 34648 ontopbas 36394 onsuct0 36407 heicant 37615 ftc1anclem6 37658 equivbnd2 37752 ismtybndlem 37766 ismrer1 37798 iccbnd 37800 ghomco 37851 rngohomco 37934 rngoisocnv 37941 rngoisoco 37942 idlsubcl 37983 xihopellsmN 41211 dihopellsm 41212 f1o2d2 42228 dvconstbi 44303 ovolval5lem3 46575 imasetpreimafvbijlemf1 47278 fargshiftf1 47315 elpglem1 48803 |
Copyright terms: Public domain | W3C validator |