Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 416 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 416 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 612 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 410 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: 2f1fvneq 7072 isocnv 7139 isocnv3 7141 f1oiso2 7161 xpexr2 7697 f1o2ndf1 7891 fnwelem 7898 omword 8298 oeword 8318 swoso 8424 xpf1o 8808 zorn2lem6 10115 ltapr 10659 ltord1 11358 pc11 16433 imasaddfnlem 17033 imasaddflem 17035 pslem 18078 mhmpropd 18224 frmdsssubm 18288 ghmsub 18630 gasubg 18696 invrpropd 19716 znfld 20525 cygznlem3 20534 mplcoe5lem 20996 evlseu 21043 cpmatmcl 21616 tgclb 21867 innei 22022 txcn 22523 txflf 22903 qustgplem 23018 clmsub4 24003 cfilresi 24192 volcn 24503 itg1addlem4 24596 itg1addlem4OLD 24597 dvlip 24890 plymullem1 25108 lgsdir2 26211 lgsdchr 26236 brbtwn2 26996 axcontlem7 27061 frgrncvvdeqlem8 28389 nvaddsub4 28738 hhcno 29985 hhcnf 29986 unopf1o 29997 counop 30002 afsval 32363 ontopbas 34354 onsuct0 34367 heicant 35549 ftc1anclem6 35592 equivbnd2 35687 ismtybndlem 35701 ismrer1 35733 iccbnd 35735 ghomco 35786 rngohomco 35869 rngoisocnv 35876 rngoisoco 35877 idlsubcl 35918 xihopellsmN 39005 dihopellsm 39006 mhphf 39995 dvconstbi 41625 imasetpreimafvbijlemf1 44529 fargshiftf1 44566 mgmhmpropd 45012 elpglem1 46087 |
Copyright terms: Public domain | W3C validator |