![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 413 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 407 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: 2f1fvneq 7255 isocnv 7323 isocnv3 7325 f1oiso2 7345 xpexr2 7906 f1o2ndf1 8104 fnwelem 8113 omword 8566 oeword 8586 swoso 8732 xpf1o 9135 zorn2lem6 10492 ltapr 11036 ltord1 11736 pc11 16809 imasaddfnlem 17470 imasaddflem 17472 pslem 18521 mhmpropd 18674 frmdsssubm 18738 ghmsub 19094 gasubg 19160 invrpropd 20224 znfld 21107 cygznlem3 21116 mplcoe5lem 21585 evlseu 21637 cpmatmcl 22212 tgclb 22464 innei 22620 txcn 23121 txflf 23501 qustgplem 23616 clmsub4 24613 cfilresi 24803 volcn 25114 itg1addlem4 25207 itg1addlem4OLD 25208 dvlip 25501 plymullem1 25719 lgsdir2 26822 lgsdchr 26847 brbtwn2 28152 axcontlem7 28217 frgrncvvdeqlem8 29548 nvaddsub4 29897 hhcno 31144 hhcnf 31145 unopf1o 31156 counop 31161 afsval 33671 ontopbas 35301 onsuct0 35314 heicant 36511 ftc1anclem6 36554 equivbnd2 36648 ismtybndlem 36662 ismrer1 36694 iccbnd 36696 ghomco 36747 rngohomco 36830 rngoisocnv 36837 rngoisoco 36838 idlsubcl 36879 xihopellsmN 40113 dihopellsm 40114 f1o2d2 41052 dvconstbi 43078 ovolval5lem3 45356 imasetpreimafvbijlemf1 46058 fargshiftf1 46095 mgmhmpropd 46541 elpglem1 47709 |
Copyright terms: Public domain | W3C validator |