![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 413 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 407 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: 2f1fvneq 7261 isocnv 7329 isocnv3 7331 f1oiso2 7351 xpexr2 7912 f1o2ndf1 8110 fnwelem 8119 omword 8572 oeword 8592 swoso 8738 xpf1o 9141 zorn2lem6 10498 ltapr 11042 ltord1 11742 pc11 16815 imasaddfnlem 17476 imasaddflem 17478 pslem 18527 mhmpropd 18680 frmdsssubm 18744 ghmsub 19102 gasubg 19168 invrpropd 20236 znfld 21122 cygznlem3 21131 mplcoe5lem 21600 evlseu 21652 cpmatmcl 22228 tgclb 22480 innei 22636 txcn 23137 txflf 23517 qustgplem 23632 clmsub4 24629 cfilresi 24819 volcn 25130 itg1addlem4 25223 itg1addlem4OLD 25224 dvlip 25517 plymullem1 25735 lgsdir2 26840 lgsdchr 26865 brbtwn2 28201 axcontlem7 28266 frgrncvvdeqlem8 29597 nvaddsub4 29948 hhcno 31195 hhcnf 31196 unopf1o 31207 counop 31212 afsval 33752 ontopbas 35399 onsuct0 35412 heicant 36609 ftc1anclem6 36652 equivbnd2 36746 ismtybndlem 36760 ismrer1 36792 iccbnd 36794 ghomco 36845 rngohomco 36928 rngoisocnv 36935 rngoisoco 36936 idlsubcl 36977 xihopellsmN 40211 dihopellsm 40212 f1o2d2 41141 dvconstbi 43175 ovolval5lem3 45449 imasetpreimafvbijlemf1 46151 fargshiftf1 46188 mgmhmpropd 46634 elpglem1 47834 |
Copyright terms: Public domain | W3C validator |