| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isocnv 7273 isocnv3 7275 f1oiso2 7295 xpexr2 7858 f1o2ndf1 8061 fnwelem 8070 omword 8494 oeword 8514 swoso 8665 xpf1o 9062 zorn2lem6 10402 ltapr 10946 ltord1 11653 pc11 16802 imasaddfnlem 17442 imasaddflem 17444 pslem 18488 mgmhmpropd 18616 mhmpropd 18710 frmdsssubm 18779 ghmsub 19146 gasubg 19224 invrpropd 20346 znfld 21507 cygznlem3 21516 mplcoe5lem 21984 evlseu 22028 cpmatmcl 22644 tgclb 22895 innei 23050 txcn 23551 txflf 23931 qustgplem 24046 clmsub4 25043 cfilresi 25232 volcn 25544 itg1addlem4 25637 dvlip 25935 plymullem1 26156 lgsdir2 27278 lgsdchr 27303 brbtwn2 28894 axcontlem7 28959 frgrncvvdeqlem8 30297 nvaddsub4 30648 hhcno 31895 hhcnf 31896 unopf1o 31907 counop 31912 mndlactf1o 33022 mndractf1o 33023 afsval 34695 ontopbas 36483 onsuct0 36496 heicant 37705 ftc1anclem6 37748 equivbnd2 37842 ismtybndlem 37856 ismrer1 37888 iccbnd 37890 ghomco 37941 rngohomco 38024 rngoisocnv 38031 rngoisoco 38032 idlsubcl 38073 xihopellsmN 41363 dihopellsm 41364 f1o2d2 42341 dvconstbi 44441 ovolval5lem3 46766 imasetpreimafvbijlemf1 47518 fargshiftf1 47555 upgrimtrlslem2 48019 elpglem1 49826 |
| Copyright terms: Public domain | W3C validator |