Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 414 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 414 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 610 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 408 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: 2f1fvneq 7165 isocnv 7233 isocnv3 7235 f1oiso2 7255 xpexr2 7798 f1o2ndf1 7994 fnwelem 8003 omword 8432 oeword 8452 swoso 8562 xpf1o 8964 zorn2lem6 10303 ltapr 10847 ltord1 11547 pc11 16626 imasaddfnlem 17284 imasaddflem 17286 pslem 18335 mhmpropd 18481 frmdsssubm 18545 ghmsub 18887 gasubg 18953 invrpropd 19985 znfld 20813 cygznlem3 20822 mplcoe5lem 21285 evlseu 21338 cpmatmcl 21913 tgclb 22165 innei 22321 txcn 22822 txflf 23202 qustgplem 23317 clmsub4 24314 cfilresi 24504 volcn 24815 itg1addlem4 24908 itg1addlem4OLD 24909 dvlip 25202 plymullem1 25420 lgsdir2 26523 lgsdchr 26548 brbtwn2 27318 axcontlem7 27383 frgrncvvdeqlem8 28715 nvaddsub4 29064 hhcno 30311 hhcnf 30312 unopf1o 30323 counop 30328 afsval 32696 ontopbas 34662 onsuct0 34675 heicant 35856 ftc1anclem6 35899 equivbnd2 35994 ismtybndlem 36008 ismrer1 36040 iccbnd 36042 ghomco 36093 rngohomco 36176 rngoisocnv 36183 rngoisoco 36184 idlsubcl 36225 xihopellsmN 39310 dihopellsm 39311 mhphf 40322 dvconstbi 41990 ovolval5lem3 44242 imasetpreimafvbijlemf1 44914 fargshiftf1 44951 mgmhmpropd 45397 elpglem1 46474 |
Copyright terms: Public domain | W3C validator |