| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 5 | 2, 4 | anim12d 609 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isocnv 7271 isocnv3 7273 f1oiso2 7293 xpexr2 7859 f1o2ndf1 8062 fnwelem 8071 omword 8495 oeword 8515 swoso 8666 xpf1o 9063 zorn2lem6 10414 ltapr 10958 ltord1 11664 pc11 16810 imasaddfnlem 17450 imasaddflem 17452 pslem 18496 mgmhmpropd 18590 mhmpropd 18684 frmdsssubm 18753 ghmsub 19121 gasubg 19199 invrpropd 20321 znfld 21485 cygznlem3 21494 mplcoe5lem 21962 evlseu 22006 cpmatmcl 22622 tgclb 22873 innei 23028 txcn 23529 txflf 23909 qustgplem 24024 clmsub4 25022 cfilresi 25211 volcn 25523 itg1addlem4 25616 dvlip 25914 plymullem1 26135 lgsdir2 27257 lgsdchr 27282 brbtwn2 28868 axcontlem7 28933 frgrncvvdeqlem8 30268 nvaddsub4 30619 hhcno 31866 hhcnf 31867 unopf1o 31878 counop 31883 mndlactf1o 32997 mndractf1o 32998 afsval 34638 ontopbas 36401 onsuct0 36414 heicant 37634 ftc1anclem6 37677 equivbnd2 37771 ismtybndlem 37785 ismrer1 37817 iccbnd 37819 ghomco 37870 rngohomco 37953 rngoisocnv 37960 rngoisoco 37961 idlsubcl 38002 xihopellsmN 41233 dihopellsm 41234 f1o2d2 42206 dvconstbi 44307 ovolval5lem3 46636 imasetpreimafvbijlemf1 47389 fargshiftf1 47426 upgrimtrlslem2 47889 elpglem1 49684 |
| Copyright terms: Public domain | W3C validator |