| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrels2 | Structured version Visualization version GIF version | ||
| Description: The element of the relations class (df-rels 38445) and the relation predicate (df-rel 5672) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
| Ref | Expression |
|---|---|
| elrels2 | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rels 38445 | . . 3 ⊢ Rels = 𝒫 (V × V) | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V)) |
| 3 | elpwg 4583 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V))) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 𝒫 cpw 4580 × cxp 5663 Rels crels 38143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ss 3948 df-pw 4582 df-rels 38445 |
| This theorem is referenced by: elrelsrel 38447 |
| Copyright terms: Public domain | W3C validator |