Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrels2 | Structured version Visualization version GIF version |
Description: The element of the relations class (df-rels 36603) and the relation predicate (df-rel 5596) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
Ref | Expression |
---|---|
elrels2 | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rels 36603 | . . 3 ⊢ Rels = 𝒫 (V × V) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V)) |
3 | elpwg 4536 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V))) | |
4 | 2, 3 | syl5bb 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 × cxp 5587 Rels crels 36335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-rels 36603 |
This theorem is referenced by: elrelsrel 36605 |
Copyright terms: Public domain | W3C validator |