Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrels2 Structured version   Visualization version   GIF version

Theorem elrels2 37868
Description: The element of the relations class (df-rels 37867) and the relation predicate (df-rel 5676) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.)
Assertion
Ref Expression
elrels2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))

Proof of Theorem elrels2
StepHypRef Expression
1 df-rels 37867 . . 3 Rels = 𝒫 (V × V)
21eleq2i 2819 . 2 (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V))
3 elpwg 4600 . 2 (𝑅𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V)))
42, 3bitrid 283 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  Vcvv 3468  wss 3943  𝒫 cpw 4597   × cxp 5667   Rels crels 37557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-in 3950  df-ss 3960  df-pw 4599  df-rels 37867
This theorem is referenced by:  elrelsrel  37869
  Copyright terms: Public domain W3C validator