| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrels2 | Structured version Visualization version GIF version | ||
| Description: The element of the relations class (df-rels 38476) and the relation predicate (df-rel 5645) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
| Ref | Expression |
|---|---|
| elrels2 | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rels 38476 | . . 3 ⊢ Rels = 𝒫 (V × V) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V)) |
| 3 | elpwg 4566 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V))) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 × cxp 5636 Rels crels 38171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-pw 4565 df-rels 38476 |
| This theorem is referenced by: elrelsrel 38478 |
| Copyright terms: Public domain | W3C validator |