Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrels2 | Structured version Visualization version GIF version |
Description: The element of the relations class (df-rels 36530) and the relation predicate (df-rel 5587) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
Ref | Expression |
---|---|
elrels2 | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rels 36530 | . . 3 ⊢ Rels = 𝒫 (V × V) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V)) |
3 | elpwg 4533 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V))) | |
4 | 2, 3 | syl5bb 282 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 Rels crels 36262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-rels 36530 |
This theorem is referenced by: elrelsrel 36532 |
Copyright terms: Public domain | W3C validator |