Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrels2 Structured version   Visualization version   GIF version

Theorem elrels2 37351
Description: The element of the relations class (df-rels 37350) and the relation predicate (df-rel 5683) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.)
Assertion
Ref Expression
elrels2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))

Proof of Theorem elrels2
StepHypRef Expression
1 df-rels 37350 . . 3 Rels = 𝒫 (V × V)
21eleq2i 2825 . 2 (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V))
3 elpwg 4605 . 2 (𝑅𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V)))
42, 3bitrid 282 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3474  wss 3948  𝒫 cpw 4602   × cxp 5674   Rels crels 37040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-pw 4604  df-rels 37350
This theorem is referenced by:  elrelsrel  37352
  Copyright terms: Public domain W3C validator