| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrels2 | Structured version Visualization version GIF version | ||
| Description: The element of the relations class (df-rels 38474) and the relation predicate (df-rel 5621) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
| Ref | Expression |
|---|---|
| elrels2 | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rels 38474 | . . 3 ⊢ Rels = 𝒫 (V × V) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V)) |
| 3 | elpwg 4550 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V))) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 × cxp 5612 Rels crels 38234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-pw 4549 df-rels 38474 |
| This theorem is referenced by: elrelsrel 38476 |
| Copyright terms: Public domain | W3C validator |