Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrels2 Structured version   Visualization version   GIF version

Theorem elrels2 38482
Description: The element of the relations class (df-rels 38481) and the relation predicate (df-rel 5700) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.)
Assertion
Ref Expression
elrels2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))

Proof of Theorem elrels2
StepHypRef Expression
1 df-rels 38481 . . 3 Rels = 𝒫 (V × V)
21eleq2i 2833 . 2 (𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 (V × V))
3 elpwg 4611 . 2 (𝑅𝑉 → (𝑅 ∈ 𝒫 (V × V) ↔ 𝑅 ⊆ (V × V)))
42, 3bitrid 283 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3481  wss 3966  𝒫 cpw 4608   × cxp 5691   Rels crels 38178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ss 3983  df-pw 4610  df-rels 38481
This theorem is referenced by:  elrelsrel  38483
  Copyright terms: Public domain W3C validator