| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rel | Structured version Visualization version GIF version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6141 and dfrel3 6150. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wrel 5624 | . 2 wff Rel 𝐴 |
| 3 | cvv 3437 | . . . 4 class V | |
| 4 | 3, 3 | cxp 5617 | . . 3 class (V × V) |
| 5 | 1, 4 | wss 3898 | . 2 wff 𝐴 ⊆ (V × V) |
| 6 | 2, 5 | wb 206 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: relxp 5637 pwvrel 5669 brrelex12 5671 0nelrel0 5679 releq 5721 nfrel 5724 sbcrel 5725 relss 5726 ssrel 5727 elrel 5742 rel0 5743 nrelv 5744 relsng 5745 relun 5755 reliun 5760 reliin 5761 relopabiv 5764 relopabi 5766 relopabiALT 5767 exopxfr2 5788 relop 5794 eqbrrdva 5813 elreldm 5879 cnvcnv 6144 relrelss 6225 cnviin 6238 dff3 7039 oprabss 7460 relmptopab 7602 1st2nd 7977 1stdm 7978 releldm2 7981 relmpoopab 8030 reldmtpos 8170 dmtpos 8174 dftpos4 8181 tpostpos 8182 iiner 8719 fundmen 8960 nqerf 10828 uzrdgfni 13867 hashfun 14346 reltrclfv 14926 homarel 17945 relxpchom 18089 nfchnd 18519 ustrel 24128 utop2nei 24166 utop3cls 24167 metustrel 24468 pi1xfrcnv 24985 reldv 25799 dvbsss 25831 ssrelf 32600 1stpreimas 32691 fpwrelmap 32720 gsumhashmul 33048 metideq 33927 metider 33928 pstmfval 33930 esum2d 34127 txprel 35942 relsset 35951 elfuns 35978 fnsingle 35982 funimage 35991 bj-opelrelex 37209 bj-elid5 37234 mblfinlem1 37717 rngosn3 37984 xrnrel 38426 elrelsrel 38486 dihvalrel 41398 cnvcnvintabd 43717 cnvintabd 43720 clcnvlem 43740 rfovcnvf1od 44121 relopabVD 45017 sprsymrelfo 47621 dmtposss 49000 oppff1 49273 fuco2eld2 49439 fuco22a 49475 |
| Copyright terms: Public domain | W3C validator |