![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rel | Structured version Visualization version GIF version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6220 and dfrel3 6229. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wrel 5705 | . 2 wff Rel 𝐴 |
3 | cvv 3488 | . . . 4 class V | |
4 | 3, 3 | cxp 5698 | . . 3 class (V × V) |
5 | 1, 4 | wss 3976 | . 2 wff 𝐴 ⊆ (V × V) |
6 | 2, 5 | wb 206 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: relxp 5718 pwvrel 5750 brrelex12 5752 0nelrel0 5760 releq 5800 nfrel 5803 sbcrel 5804 relss 5805 ssrel 5806 ssrelOLD 5807 elrel 5822 rel0 5823 nrelv 5824 relsng 5825 relun 5835 reliun 5840 reliin 5841 relopabiv 5844 relopabi 5846 relopabiALT 5847 exopxfr2 5869 relop 5875 eqbrrdva 5894 elreldm 5960 cnvcnv 6223 relrelss 6304 cnviin 6317 dff3 7134 oprabss 7557 relmptopab 7700 1st2nd 8080 1stdm 8081 releldm2 8084 relmpoopab 8135 reldmtpos 8275 dmtpos 8279 dftpos4 8286 tpostpos 8287 iiner 8847 fundmen 9096 nqerf 10999 uzrdgfni 14009 hashfun 14486 reltrclfv 15066 homarel 18103 relxpchom 18250 ustrel 24241 utop2nei 24280 utop3cls 24281 metustrel 24586 pi1xfrcnv 25109 reldv 25925 dvbsss 25957 ssrelf 32637 1stpreimas 32717 fpwrelmap 32747 gsumhashmul 33040 metideq 33839 metider 33840 pstmfval 33842 esum2d 34057 txprel 35843 relsset 35852 elfuns 35879 fnsingle 35883 funimage 35892 bj-opelrelex 37110 bj-elid5 37135 mblfinlem1 37617 rngosn3 37884 xrnrel 38329 elrelsrel 38443 dihvalrel 41236 cnvcnvintabd 43562 cnvintabd 43565 clcnvlem 43585 rfovcnvf1od 43966 relopabVD 44872 sprsymrelfo 47371 |
Copyright terms: Public domain | W3C validator |