| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rel | Structured version Visualization version GIF version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6142 and dfrel3 6151. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wrel 5628 | . 2 wff Rel 𝐴 |
| 3 | cvv 3438 | . . . 4 class V | |
| 4 | 3, 3 | cxp 5621 | . . 3 class (V × V) |
| 5 | 1, 4 | wss 3905 | . 2 wff 𝐴 ⊆ (V × V) |
| 6 | 2, 5 | wb 206 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: relxp 5641 pwvrel 5673 brrelex12 5675 0nelrel0 5683 releq 5724 nfrel 5727 sbcrel 5728 relss 5729 ssrel 5730 elrel 5745 rel0 5746 nrelv 5747 relsng 5748 relun 5758 reliun 5763 reliin 5764 relopabiv 5767 relopabi 5769 relopabiALT 5770 exopxfr2 5791 relop 5797 eqbrrdva 5816 elreldm 5881 cnvcnv 6145 relrelss 6225 cnviin 6238 dff3 7038 oprabss 7461 relmptopab 7603 1st2nd 7981 1stdm 7982 releldm2 7985 relmpoopab 8034 reldmtpos 8174 dmtpos 8178 dftpos4 8185 tpostpos 8186 iiner 8723 fundmen 8963 nqerf 10843 uzrdgfni 13883 hashfun 14362 reltrclfv 14942 homarel 17961 relxpchom 18105 ustrel 24115 utop2nei 24154 utop3cls 24155 metustrel 24456 pi1xfrcnv 24973 reldv 25787 dvbsss 25819 ssrelf 32576 1stpreimas 32662 fpwrelmap 32689 gsumhashmul 33027 metideq 33859 metider 33860 pstmfval 33862 esum2d 34059 txprel 35852 relsset 35861 elfuns 35888 fnsingle 35892 funimage 35901 bj-opelrelex 37117 bj-elid5 37142 mblfinlem1 37636 rngosn3 37903 xrnrel 38340 elrelsrel 38463 dihvalrel 41258 cnvcnvintabd 43573 cnvintabd 43576 clcnvlem 43596 rfovcnvf1od 43977 relopabVD 44874 sprsymrelfo 47482 dmtposss 48861 oppff1 49134 fuco2eld2 49300 fuco22a 49336 |
| Copyright terms: Public domain | W3C validator |