| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rel | Structured version Visualization version GIF version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6136 and dfrel3 6145. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wrel 5621 | . 2 wff Rel 𝐴 |
| 3 | cvv 3436 | . . . 4 class V | |
| 4 | 3, 3 | cxp 5614 | . . 3 class (V × V) |
| 5 | 1, 4 | wss 3902 | . 2 wff 𝐴 ⊆ (V × V) |
| 6 | 2, 5 | wb 206 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: relxp 5634 pwvrel 5666 brrelex12 5668 0nelrel0 5676 releq 5717 nfrel 5720 sbcrel 5721 relss 5722 ssrel 5723 elrel 5738 rel0 5739 nrelv 5740 relsng 5741 relun 5751 reliun 5756 reliin 5757 relopabiv 5760 relopabi 5762 relopabiALT 5763 exopxfr2 5784 relop 5790 eqbrrdva 5809 elreldm 5875 cnvcnv 6139 relrelss 6220 cnviin 6233 dff3 7033 oprabss 7454 relmptopab 7596 1st2nd 7971 1stdm 7972 releldm2 7975 relmpoopab 8024 reldmtpos 8164 dmtpos 8168 dftpos4 8175 tpostpos 8176 iiner 8713 fundmen 8953 nqerf 10818 uzrdgfni 13862 hashfun 14341 reltrclfv 14921 homarel 17940 relxpchom 18084 nfchnd 18514 ustrel 24125 utop2nei 24163 utop3cls 24164 metustrel 24465 pi1xfrcnv 24982 reldv 25796 dvbsss 25828 ssrelf 32593 1stpreimas 32682 fpwrelmap 32711 gsumhashmul 33036 metideq 33901 metider 33902 pstmfval 33904 esum2d 34101 txprel 35912 relsset 35921 elfuns 35948 fnsingle 35952 funimage 35961 bj-opelrelex 37177 bj-elid5 37202 mblfinlem1 37696 rngosn3 37963 xrnrel 38400 elrelsrel 38523 dihvalrel 41317 cnvcnvintabd 43632 cnvintabd 43635 clcnvlem 43655 rfovcnvf1od 44036 relopabVD 44932 sprsymrelfo 47527 dmtposss 48906 oppff1 49179 fuco2eld2 49345 fuco22a 49381 |
| Copyright terms: Public domain | W3C validator |