![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rel | Structured version Visualization version GIF version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6189 and dfrel3 6198. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wrel 5682 | . 2 wff Rel 𝐴 |
3 | cvv 3475 | . . . 4 class V | |
4 | 3, 3 | cxp 5675 | . . 3 class (V × V) |
5 | 1, 4 | wss 3949 | . 2 wff 𝐴 ⊆ (V × V) |
6 | 2, 5 | wb 205 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: relxp 5695 pwvrel 5727 brrelex12 5729 0nelrel0 5737 releq 5777 nfrel 5780 sbcrel 5781 relss 5782 ssrel 5783 ssrelOLD 5784 elrel 5799 rel0 5800 nrelv 5801 relsng 5802 relun 5812 reliun 5817 reliin 5818 relopabiv 5821 relopabi 5823 relopabiALT 5824 exopxfr2 5845 relop 5851 eqbrrdva 5870 elreldm 5935 cnvcnv 6192 relrelss 6273 cnviin 6286 dff3 7102 oprabss 7515 relmptopab 7656 1st2nd 8025 1stdm 8026 releldm2 8029 relmpoopab 8080 reldmtpos 8219 dmtpos 8223 dftpos4 8230 tpostpos 8231 iiner 8783 fundmen 9031 nqerf 10925 uzrdgfni 13923 hashfun 14397 reltrclfv 14964 homarel 17986 relxpchom 18133 ustrel 23716 utop2nei 23755 utop3cls 23756 metustrel 24061 pi1xfrcnv 24573 reldv 25387 dvbsss 25419 ssrelf 31875 1stpreimas 31958 fpwrelmap 31989 gsumhashmul 32239 metideq 32904 metider 32905 pstmfval 32907 esum2d 33122 txprel 34882 relsset 34891 elfuns 34918 fnsingle 34922 funimage 34931 bj-opelrelex 36073 bj-elid5 36098 mblfinlem1 36573 rngosn3 36840 xrnrel 37291 elrelsrel 37405 dihvalrel 40198 cnvcnvintabd 42399 cnvintabd 42402 clcnvlem 42422 rfovcnvf1od 42803 relopabVD 43710 sprsymrelfo 46213 |
Copyright terms: Public domain | W3C validator |