Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rel | Structured version Visualization version GIF version |
Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 6081 and dfrel3 6090. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-rel | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wrel 5585 | . 2 wff Rel 𝐴 |
3 | cvv 3422 | . . . 4 class V | |
4 | 3, 3 | cxp 5578 | . . 3 class (V × V) |
5 | 1, 4 | wss 3883 | . 2 wff 𝐴 ⊆ (V × V) |
6 | 2, 5 | wb 205 | 1 wff (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: relxp 5598 pwvrel 5628 brrelex12 5630 0nelrel0 5638 releq 5677 nfrel 5680 sbcrel 5681 relss 5682 ssrel 5683 elrel 5697 rel0 5698 nrelv 5699 relsng 5700 relun 5710 reliun 5715 reliin 5716 relopabiv 5719 relopabi 5721 relopabiALT 5722 exopxfr2 5742 relop 5748 eqbrrdva 5767 elreldm 5833 cnvcnv 6084 relrelss 6165 cnviin 6178 dff3 6958 oprabss 7359 relmptopab 7497 1st2nd 7853 1stdm 7854 releldm2 7857 relmpoopab 7905 reldmtpos 8021 dmtpos 8025 dftpos4 8032 tpostpos 8033 iiner 8536 fundmen 8775 nqerf 10617 uzrdgfni 13606 hashfun 14080 reltrclfv 14656 homarel 17667 relxpchom 17814 ustrel 23271 utop2nei 23310 utop3cls 23311 metustrel 23614 pi1xfrcnv 24126 reldv 24939 dvbsss 24971 ssrelf 30856 1stpreimas 30940 fpwrelmap 30970 gsumhashmul 31218 metideq 31745 metider 31746 pstmfval 31748 esum2d 31961 txprel 34108 relsset 34117 elfuns 34144 fnsingle 34148 funimage 34157 bj-opelrelex 35242 bj-elid5 35267 mblfinlem1 35741 rngosn3 36009 xrnrel 36430 elrelsrel 36532 dihvalrel 39220 cnvcnvintabd 41097 cnvintabd 41100 clcnvlem 41120 rfovcnvf1od 41501 relopabVD 42410 sprsymrelfo 44837 |
Copyright terms: Public domain | W3C validator |