Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrel Structured version   Visualization version   GIF version

Theorem elrelsrel 38443
Description: The element of the relations class (df-rels 38441) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.)
Assertion
Ref Expression
elrelsrel (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))

Proof of Theorem elrelsrel
StepHypRef Expression
1 elrels2 38442 . 2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
2 df-rel 5707 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
31, 2bitr4di 289 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3488  wss 3976   × cxp 5698  Rel wrel 5705   Rels crels 38137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ss 3993  df-pw 4624  df-rel 5707  df-rels 38441
This theorem is referenced by:  elrelsrelim  38444  elrels5  38445  elrels6  38446  cnvelrels  38451  cosselrels  38452  elrefrelsrel  38476  elcnvrefrelsrel  38492  elsymrelsrel  38513  eltrrelsrel  38537  eleqvrelsrel  38550  elfunsALTVfunALTV  38653  eldisjs5  38682  eldisjsdisj  38683
  Copyright terms: Public domain W3C validator