![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrel | Structured version Visualization version GIF version |
Description: The element of the relations class (df-rels 38193) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
Ref | Expression |
---|---|
elrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrels2 38194 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | |
2 | df-rel 5679 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
3 | 1, 2 | bitr4di 288 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3946 × cxp 5670 Rel wrel 5677 Rels crels 37888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ss 3963 df-pw 4599 df-rel 5679 df-rels 38193 |
This theorem is referenced by: elrelsrelim 38196 elrels5 38197 elrels6 38198 cnvelrels 38203 cosselrels 38204 elrefrelsrel 38228 elcnvrefrelsrel 38244 elsymrelsrel 38265 eltrrelsrel 38289 eleqvrelsrel 38302 elfunsALTVfunALTV 38405 eldisjs5 38434 eldisjsdisj 38435 |
Copyright terms: Public domain | W3C validator |