Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrel Structured version   Visualization version   GIF version

Theorem elrelsrel 35832
 Description: The element of the relations class (df-rels 35830) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.)
Assertion
Ref Expression
elrelsrel (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))

Proof of Theorem elrelsrel
StepHypRef Expression
1 elrels2 35831 . 2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
2 df-rel 5549 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
31, 2syl6bbr 292 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∈ wcel 2115  Vcvv 3480   ⊆ wss 3919   × cxp 5540  Rel wrel 5547   Rels crels 35560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-in 3926  df-ss 3936  df-pw 4524  df-rel 5549  df-rels 35830 This theorem is referenced by:  elrelsrelim  35833  elrels5  35834  elrels6  35835  cnvelrels  35840  cosselrels  35841  elrefrelsrel  35864  elcnvrefrelsrel  35877  elsymrelsrel  35898  eltrrelsrel  35922  eleqvrelsrel  35934  elfunsALTVfunALTV  36035  eldisjs5  36064  eldisjsdisj  36065
 Copyright terms: Public domain W3C validator