Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrel Structured version   Visualization version   GIF version

Theorem elrelsrel 37999
Description: The element of the relations class (df-rels 37997) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.)
Assertion
Ref Expression
elrelsrel (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))

Proof of Theorem elrelsrel
StepHypRef Expression
1 elrels2 37998 . 2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
2 df-rel 5689 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
31, 2bitr4di 288 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  Vcvv 3473  wss 3949   × cxp 5680  Rel wrel 5687   Rels crels 37691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3475  df-in 3956  df-ss 3966  df-pw 4608  df-rel 5689  df-rels 37997
This theorem is referenced by:  elrelsrelim  38000  elrels5  38001  elrels6  38002  cnvelrels  38007  cosselrels  38008  elrefrelsrel  38032  elcnvrefrelsrel  38048  elsymrelsrel  38069  eltrrelsrel  38093  eleqvrelsrel  38106  elfunsALTVfunALTV  38209  eldisjs5  38238  eldisjsdisj  38239
  Copyright terms: Public domain W3C validator