![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrel | Structured version Visualization version GIF version |
Description: The element of the relations class (df-rels 38467) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
Ref | Expression |
---|---|
elrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrels2 38468 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | |
2 | df-rel 5696 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 × cxp 5687 Rel wrel 5694 Rels crels 38164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-pw 4607 df-rel 5696 df-rels 38467 |
This theorem is referenced by: elrelsrelim 38470 elrels5 38471 elrels6 38472 cnvelrels 38477 cosselrels 38478 elrefrelsrel 38502 elcnvrefrelsrel 38518 elsymrelsrel 38539 eltrrelsrel 38563 eleqvrelsrel 38576 elfunsALTVfunALTV 38679 eldisjs5 38708 eldisjsdisj 38709 |
Copyright terms: Public domain | W3C validator |