Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrel Structured version   Visualization version   GIF version

Theorem elrelsrel 38505
Description: The element of the relations class (df-rels 38503) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.)
Assertion
Ref Expression
elrelsrel (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))

Proof of Theorem elrelsrel
StepHypRef Expression
1 elrels2 38504 . 2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
2 df-rel 5661 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
31, 2bitr4di 289 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3459  wss 3926   × cxp 5652  Rel wrel 5659   Rels crels 38201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ss 3943  df-pw 4577  df-rel 5661  df-rels 38503
This theorem is referenced by:  elrelsrelim  38506  elrels5  38507  elrels6  38508  cnvelrels  38513  cosselrels  38514  elrefrelsrel  38538  elcnvrefrelsrel  38554  elsymrelsrel  38575  eltrrelsrel  38599  eleqvrelsrel  38612  elfunsALTVfunALTV  38715  eldisjs5  38744  eldisjsdisj  38745
  Copyright terms: Public domain W3C validator