![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrel | Structured version Visualization version GIF version |
Description: The element of the relations class (df-rels 38441) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
Ref | Expression |
---|---|
elrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrels2 38442 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | |
2 | df-rel 5707 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 × cxp 5698 Rel wrel 5705 Rels crels 38137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-pw 4624 df-rel 5707 df-rels 38441 |
This theorem is referenced by: elrelsrelim 38444 elrels5 38445 elrels6 38446 cnvelrels 38451 cosselrels 38452 elrefrelsrel 38476 elcnvrefrelsrel 38492 elsymrelsrel 38513 eltrrelsrel 38537 eleqvrelsrel 38550 elfunsALTVfunALTV 38653 eldisjs5 38682 eldisjsdisj 38683 |
Copyright terms: Public domain | W3C validator |