Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrel Structured version   Visualization version   GIF version

Theorem elrelsrel 38466
Description: The element of the relations class (df-rels 38464) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.)
Assertion
Ref Expression
elrelsrel (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))

Proof of Theorem elrelsrel
StepHypRef Expression
1 elrels2 38465 . 2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
2 df-rel 5630 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
31, 2bitr4di 289 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3438  wss 3905   × cxp 5621  Rel wrel 5628   Rels crels 38159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3922  df-pw 4555  df-rel 5630  df-rels 38464
This theorem is referenced by:  elrelsrelim  38467  elrels5  38468  elrels6  38469  cnvelrels  38474  cosselrels  38475  elrefrelsrel  38499  elcnvrefrelsrel  38515  elsymrelsrel  38536  eltrrelsrel  38560  eleqvrelsrel  38573  elfunsALTVfunALTV  38677  eldisjs5  38706  eldisjsdisj  38707
  Copyright terms: Public domain W3C validator