| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrel | Structured version Visualization version GIF version | ||
| Description: The element of the relations class (df-rels 38476) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
| Ref | Expression |
|---|---|
| elrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrels2 38477 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | |
| 2 | df-rel 5645 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 × cxp 5636 Rel wrel 5643 Rels crels 38171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-pw 4565 df-rel 5645 df-rels 38476 |
| This theorem is referenced by: elrelsrelim 38479 elrels5 38480 elrels6 38481 cnvelrels 38486 cosselrels 38487 elrefrelsrel 38511 elcnvrefrelsrel 38527 elsymrelsrel 38548 eltrrelsrel 38572 eleqvrelsrel 38585 elfunsALTVfunALTV 38689 eldisjs5 38718 eldisjsdisj 38719 |
| Copyright terms: Public domain | W3C validator |