Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrel | Structured version Visualization version GIF version |
Description: The element of the relations class (df-rels 36599) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
Ref | Expression |
---|---|
elrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrels2 36600 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | |
2 | df-rel 5597 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 × cxp 5588 Rel wrel 5595 Rels crels 36331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-pw 4541 df-rel 5597 df-rels 36599 |
This theorem is referenced by: elrelsrelim 36602 elrels5 36603 elrels6 36604 cnvelrels 36609 cosselrels 36610 elrefrelsrel 36633 elcnvrefrelsrel 36646 elsymrelsrel 36667 eltrrelsrel 36691 eleqvrelsrel 36703 elfunsALTVfunALTV 36804 eldisjs5 36833 eldisjsdisj 36834 |
Copyright terms: Public domain | W3C validator |