| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrel | Structured version Visualization version GIF version | ||
| Description: The element of the relations class (df-rels 38487) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
| Ref | Expression |
|---|---|
| elrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrels2 38488 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | |
| 2 | df-rel 5628 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 × cxp 5619 Rel wrel 5626 Rels crels 38247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-pw 4553 df-rel 5628 df-rels 38487 |
| This theorem is referenced by: elrelsrelim 38490 elrels5 38491 elrels6 38492 cosselrels 38610 cnvelrels 38611 elrefrelsrel 38635 elcnvrefrelsrel 38651 elsymrelsrel 38676 eltrrelsrel 38700 eleqvrelsrel 38713 elfunsALTVfunALTV 38818 eldisjs5 38847 eldisjsdisj 38848 |
| Copyright terms: Public domain | W3C validator |