Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrel Structured version   Visualization version   GIF version

Theorem elrelsrel 38478
Description: The element of the relations class (df-rels 38476) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.)
Assertion
Ref Expression
elrelsrel (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))

Proof of Theorem elrelsrel
StepHypRef Expression
1 elrels2 38477 . 2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V)))
2 df-rel 5645 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
31, 2bitr4di 289 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3447  wss 3914   × cxp 5636  Rel wrel 5643   Rels crels 38171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3931  df-pw 4565  df-rel 5645  df-rels 38476
This theorem is referenced by:  elrelsrelim  38479  elrels5  38480  elrels6  38481  cnvelrels  38486  cosselrels  38487  elrefrelsrel  38511  elcnvrefrelsrel  38527  elsymrelsrel  38548  eltrrelsrel  38572  eleqvrelsrel  38585  elfunsALTVfunALTV  38689  eldisjs5  38718  eldisjsdisj  38719
  Copyright terms: Public domain W3C validator