| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrel | Structured version Visualization version GIF version | ||
| Description: The element of the relations class (df-rels 38528) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
| Ref | Expression |
|---|---|
| elrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrels2 38529 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | |
| 2 | df-rel 5623 | . 2 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 × cxp 5614 Rel wrel 5621 Rels crels 38223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3919 df-pw 4552 df-rel 5623 df-rels 38528 |
| This theorem is referenced by: elrelsrelim 38531 elrels5 38532 elrels6 38533 cnvelrels 38538 cosselrels 38539 elrefrelsrel 38563 elcnvrefrelsrel 38579 elsymrelsrel 38600 eltrrelsrel 38624 eleqvrelsrel 38637 elfunsALTVfunALTV 38741 eldisjs5 38770 eldisjsdisj 38771 |
| Copyright terms: Public domain | W3C validator |