|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elrint2 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| elrint2 | ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrint 4988 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | |
| 2 | 1 | baib 535 | 1 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 ∀wral 3060 ∩ cin 3949 ∩ cint 4945 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-v 3481 df-in 3957 df-int 4946 | 
| This theorem is referenced by: mreacs 17702 | 
| Copyright terms: Public domain | W3C validator |