Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrint2 | Structured version Visualization version GIF version |
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
elrint2 | ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrint 4919 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | |
2 | 1 | baib 535 | 1 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-int 4877 |
This theorem is referenced by: mreacs 17284 |
Copyright terms: Public domain | W3C validator |