MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrint Structured version   Visualization version   GIF version

Theorem elrint 5013
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elrint
StepHypRef Expression
1 elin 3992 . 2 (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴𝑋 𝐵))
2 elintg 4978 . . 3 (𝑋𝐴 → (𝑋 𝐵 ↔ ∀𝑦𝐵 𝑋𝑦))
32pm5.32i 574 . 2 ((𝑋𝐴𝑋 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
41, 3bitri 275 1 (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wral 3067  cin 3975   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-in 3983  df-int 4971
This theorem is referenced by:  elrint2  5014  ptcnplem  23650  tmdgsum2  24125  limciun  25949
  Copyright terms: Public domain W3C validator