Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrint | Structured version Visualization version GIF version |
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
elrint | ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵)) | |
2 | elintg 4887 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | |
3 | 2 | pm5.32i 575 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-int 4880 |
This theorem is referenced by: elrint2 4923 ptcnplem 22772 tmdgsum2 23247 limciun 25058 |
Copyright terms: Public domain | W3C validator |