![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrint | Structured version Visualization version GIF version |
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
elrint | ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵)) | |
2 | elintg 4957 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | |
3 | 2 | pm5.32i 573 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ∀wral 3059 ∩ cin 3946 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-v 3474 df-in 3954 df-int 4950 |
This theorem is referenced by: elrint2 4995 ptcnplem 23345 tmdgsum2 23820 limciun 25643 |
Copyright terms: Public domain | W3C validator |