|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elrint | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| elrint | ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin 3967 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵)) | |
| 2 | elintg 4954 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | |
| 3 | 2 | pm5.32i 574 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | 
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ∩ cint 4946 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-in 3958 df-int 4947 | 
| This theorem is referenced by: elrint2 4990 ptcnplem 23629 tmdgsum2 24104 limciun 25929 | 
| Copyright terms: Public domain | W3C validator |