MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrint Structured version   Visualization version   GIF version

Theorem elrint 4998
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elrint
StepHypRef Expression
1 elin 3962 . 2 (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴𝑋 𝐵))
2 elintg 4961 . . 3 (𝑋𝐴 → (𝑋 𝐵 ↔ ∀𝑦𝐵 𝑋𝑦))
32pm5.32i 573 . 2 ((𝑋𝐴𝑋 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
41, 3bitri 274 1 (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2098  wral 3050  cin 3945   cint 4953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-v 3463  df-in 3953  df-int 4954
This theorem is referenced by:  elrint2  4999  ptcnplem  23608  tmdgsum2  24083  limciun  25906
  Copyright terms: Public domain W3C validator