| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrint | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| elrint | ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵)) | |
| 2 | elintg 4907 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | |
| 3 | 2 | pm5.32i 574 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-in 3905 df-int 4900 |
| This theorem is referenced by: elrint2 4942 ptcnplem 23556 tmdgsum2 24031 limciun 25842 |
| Copyright terms: Public domain | W3C validator |