MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreacs Structured version   Visualization version   GIF version

Theorem mreacs 17284
Description: Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreacs (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))

Proof of Theorem mreacs
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑥 = 𝑋 → (ACS‘𝑥) = (ACS‘𝑋))
2 pweq 4546 . . . 4 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
32fveq2d 6760 . . 3 (𝑥 = 𝑋 → (Moore‘𝒫 𝑥) = (Moore‘𝒫 𝑋))
41, 3eleq12d 2833 . 2 (𝑥 = 𝑋 → ((ACS‘𝑥) ∈ (Moore‘𝒫 𝑥) ↔ (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)))
5 acsmre 17278 . . . . . . 7 (𝑎 ∈ (ACS‘𝑥) → 𝑎 ∈ (Moore‘𝑥))
6 mresspw 17218 . . . . . . . 8 (𝑎 ∈ (Moore‘𝑥) → 𝑎 ⊆ 𝒫 𝑥)
75, 6syl 17 . . . . . . 7 (𝑎 ∈ (ACS‘𝑥) → 𝑎 ⊆ 𝒫 𝑥)
85, 7elpwd 4538 . . . . . 6 (𝑎 ∈ (ACS‘𝑥) → 𝑎 ∈ 𝒫 𝒫 𝑥)
98ssriv 3921 . . . . 5 (ACS‘𝑥) ⊆ 𝒫 𝒫 𝑥
109a1i 11 . . . 4 (⊤ → (ACS‘𝑥) ⊆ 𝒫 𝒫 𝑥)
11 vex 3426 . . . . . . . 8 𝑥 ∈ V
12 mremre 17230 . . . . . . . 8 (𝑥 ∈ V → (Moore‘𝑥) ∈ (Moore‘𝒫 𝑥))
1311, 12mp1i 13 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → (Moore‘𝑥) ∈ (Moore‘𝒫 𝑥))
145ssriv 3921 . . . . . . . 8 (ACS‘𝑥) ⊆ (Moore‘𝑥)
15 sstr 3925 . . . . . . . 8 ((𝑎 ⊆ (ACS‘𝑥) ∧ (ACS‘𝑥) ⊆ (Moore‘𝑥)) → 𝑎 ⊆ (Moore‘𝑥))
1614, 15mpan2 687 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → 𝑎 ⊆ (Moore‘𝑥))
17 mrerintcl 17223 . . . . . . 7 (((Moore‘𝑥) ∈ (Moore‘𝒫 𝑥) ∧ 𝑎 ⊆ (Moore‘𝑥)) → (𝒫 𝑥 𝑎) ∈ (Moore‘𝑥))
1813, 16, 17syl2anc 583 . . . . . 6 (𝑎 ⊆ (ACS‘𝑥) → (𝒫 𝑥 𝑎) ∈ (Moore‘𝑥))
19 ssel2 3912 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → 𝑑 ∈ (ACS‘𝑥))
2019acsmred 17282 . . . . . . . . . . . . . . 15 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → 𝑑 ∈ (Moore‘𝑥))
21 eqid 2738 . . . . . . . . . . . . . . 15 (mrCls‘𝑑) = (mrCls‘𝑑)
2220, 21mrcssvd 17249 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2322ralrimiva 3107 . . . . . . . . . . . . 13 (𝑎 ⊆ (ACS‘𝑥) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2423adantr 480 . . . . . . . . . . . 12 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑐 ∈ 𝒫 𝑥) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
25 iunss 4971 . . . . . . . . . . . 12 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥 ↔ ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2624, 25sylibr 233 . . . . . . . . . . 11 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑐 ∈ 𝒫 𝑥) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2711elpw2 5264 . . . . . . . . . . 11 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ⊆ 𝑥)
2826, 27sylibr 233 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑐 ∈ 𝒫 𝑥) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) ∈ 𝒫 𝑥)
2928fmpttd 6971 . . . . . . . . 9 (𝑎 ⊆ (ACS‘𝑥) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥)
30 fssxp 6612 . . . . . . . . 9 ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥 → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ⊆ (𝒫 𝑥 × 𝒫 𝑥))
3129, 30syl 17 . . . . . . . 8 (𝑎 ⊆ (ACS‘𝑥) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ⊆ (𝒫 𝑥 × 𝒫 𝑥))
32 vpwex 5295 . . . . . . . . 9 𝒫 𝑥 ∈ V
3332, 32xpex 7581 . . . . . . . 8 (𝒫 𝑥 × 𝒫 𝑥) ∈ V
34 ssexg 5242 . . . . . . . 8 (((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ⊆ (𝒫 𝑥 × 𝒫 𝑥) ∧ (𝒫 𝑥 × 𝒫 𝑥) ∈ V) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ∈ V)
3531, 33, 34sylancl 585 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) ∈ V)
3619adantlr 711 . . . . . . . . . . . . 13 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑑𝑎) → 𝑑 ∈ (ACS‘𝑥))
37 elpwi 4539 . . . . . . . . . . . . . 14 (𝑏 ∈ 𝒫 𝑥𝑏𝑥)
3837ad2antlr 723 . . . . . . . . . . . . 13 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑑𝑎) → 𝑏𝑥)
3921acsfiel2 17281 . . . . . . . . . . . . 13 ((𝑑 ∈ (ACS‘𝑥) ∧ 𝑏𝑥) → (𝑏𝑑 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
4036, 38, 39syl2anc 583 . . . . . . . . . . . 12 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑑𝑎) → (𝑏𝑑 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
4140ralbidva 3119 . . . . . . . . . . 11 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (∀𝑑𝑎 𝑏𝑑 ↔ ∀𝑑𝑎𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
42 iunss 4971 . . . . . . . . . . . . 13 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
4342ralbii 3090 . . . . . . . . . . . 12 (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
44 ralcom 3280 . . . . . . . . . . . 12 (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑑𝑎𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
4543, 44bitri 274 . . . . . . . . . . 11 (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏 ↔ ∀𝑑𝑎𝑒 ∈ (𝒫 𝑏 ∩ Fin)((mrCls‘𝑑)‘𝑒) ⊆ 𝑏)
4641, 45bitr4di 288 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (∀𝑑𝑎 𝑏𝑑 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
47 elrint2 4920 . . . . . . . . . . 11 (𝑏 ∈ 𝒫 𝑥 → (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ∀𝑑𝑎 𝑏𝑑))
4847adantl 481 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ∀𝑑𝑎 𝑏𝑑))
49 funmpt 6456 . . . . . . . . . . . . 13 Fun (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))
50 funiunfv 7103 . . . . . . . . . . . . 13 (Fun (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)))
5149, 50ax-mp 5 . . . . . . . . . . . 12 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin))
5251sseq1i 3945 . . . . . . . . . . 11 ( 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)
53 iunss 4971 . . . . . . . . . . . 12 ( 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏)
54 eqid 2738 . . . . . . . . . . . . . . 15 (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))
55 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑒 → ((mrCls‘𝑑)‘𝑐) = ((mrCls‘𝑑)‘𝑒))
5655iuneq2d 4950 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 𝑑𝑎 ((mrCls‘𝑑)‘𝑐) = 𝑑𝑎 ((mrCls‘𝑑)‘𝑒))
57 inss1 4159 . . . . . . . . . . . . . . . . 17 (𝒫 𝑏 ∩ Fin) ⊆ 𝒫 𝑏
5837sspwd 4545 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ 𝒫 𝑥 → 𝒫 𝑏 ⊆ 𝒫 𝑥)
5958adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → 𝒫 𝑏 ⊆ 𝒫 𝑥)
6057, 59sstrid 3928 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (𝒫 𝑏 ∩ Fin) ⊆ 𝒫 𝑥)
6160sselda 3917 . . . . . . . . . . . . . . 15 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → 𝑒 ∈ 𝒫 𝑥)
6220, 21mrcssvd 17249 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑑𝑎) → ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
6362ralrimiva 3107 . . . . . . . . . . . . . . . . . 18 (𝑎 ⊆ (ACS‘𝑥) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
6463ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
65 iunss 4971 . . . . . . . . . . . . . . . . 17 ( 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥 ↔ ∀𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
6664, 65sylibr 233 . . . . . . . . . . . . . . . 16 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥)
67 ssexg 5242 . . . . . . . . . . . . . . . 16 (( 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑥𝑥 ∈ V) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ∈ V)
6866, 11, 67sylancl 585 . . . . . . . . . . . . . . 15 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ∈ V)
6954, 56, 61, 68fvmptd3 6880 . . . . . . . . . . . . . 14 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) = 𝑑𝑎 ((mrCls‘𝑑)‘𝑒))
7069sseq1d 3948 . . . . . . . . . . . . 13 (((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) ∧ 𝑒 ∈ (𝒫 𝑏 ∩ Fin)) → (((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7170ralbidva 3119 . . . . . . . . . . . 12 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (∀𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7253, 71syl5bb 282 . . . . . . . . . . 11 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → ( 𝑒 ∈ (𝒫 𝑏 ∩ Fin)((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐))‘𝑒) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7352, 72bitr3id 284 . . . . . . . . . 10 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → ( ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏 ↔ ∀𝑒 ∈ (𝒫 𝑏 ∩ Fin) 𝑑𝑎 ((mrCls‘𝑑)‘𝑒) ⊆ 𝑏))
7446, 48, 733bitr4d 310 . . . . . . . . 9 ((𝑎 ⊆ (ACS‘𝑥) ∧ 𝑏 ∈ 𝒫 𝑥) → (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))
7574ralrimiva 3107 . . . . . . . 8 (𝑎 ⊆ (ACS‘𝑥) → ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))
7629, 75jca 511 . . . . . . 7 (𝑎 ⊆ (ACS‘𝑥) → ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
77 feq1 6565 . . . . . . . 8 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (𝑓:𝒫 𝑥⟶𝒫 𝑥 ↔ (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥))
78 imaeq1 5953 . . . . . . . . . . . 12 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (𝑓 “ (𝒫 𝑏 ∩ Fin)) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)))
7978unieqd 4850 . . . . . . . . . . 11 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (𝑓 “ (𝒫 𝑏 ∩ Fin)) = ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)))
8079sseq1d 3948 . . . . . . . . . 10 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → ( (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏 ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))
8180bibi2d 342 . . . . . . . . 9 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → ((𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏) ↔ (𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
8281ralbidv 3120 . . . . . . . 8 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → (∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏) ↔ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
8377, 82anbi12d 630 . . . . . . 7 (𝑓 = (𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) → ((𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)):𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ ((𝑐 ∈ 𝒫 𝑥 𝑑𝑎 ((mrCls‘𝑑)‘𝑐)) “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))))
8435, 76, 83spcedv 3527 . . . . . 6 (𝑎 ⊆ (ACS‘𝑥) → ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏)))
85 isacs 17277 . . . . . 6 ((𝒫 𝑥 𝑎) ∈ (ACS‘𝑥) ↔ ((𝒫 𝑥 𝑎) ∈ (Moore‘𝑥) ∧ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑏 ∈ 𝒫 𝑥(𝑏 ∈ (𝒫 𝑥 𝑎) ↔ (𝑓 “ (𝒫 𝑏 ∩ Fin)) ⊆ 𝑏))))
8618, 84, 85sylanbrc 582 . . . . 5 (𝑎 ⊆ (ACS‘𝑥) → (𝒫 𝑥 𝑎) ∈ (ACS‘𝑥))
8786adantl 481 . . . 4 ((⊤ ∧ 𝑎 ⊆ (ACS‘𝑥)) → (𝒫 𝑥 𝑎) ∈ (ACS‘𝑥))
8810, 87ismred2 17229 . . 3 (⊤ → (ACS‘𝑥) ∈ (Moore‘𝒫 𝑥))
8988mptru 1546 . 2 (ACS‘𝑥) ∈ (Moore‘𝒫 𝑥)
904, 89vtoclg 3495 1 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wex 1783  wcel 2108  wral 3063  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836   cint 4876   ciun 4921  cmpt 5153   × cxp 5578  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213  df-acs 17215
This theorem is referenced by:  acsfn1  17287  acsfn1c  17288  acsfn2  17289  submacs  18380  subgacs  18704  nsgacs  18705  acsfn1p  19982  subrgacs  19983  sdrgacs  19984  lssacs  20144
  Copyright terms: Public domain W3C validator