| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cpcolld | Structured version Visualization version GIF version | ||
| Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| cpcolld.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| cpcolld.2 | ⊢ (𝜑 → 𝑥𝐹𝑦) |
| Ref | Expression |
|---|---|
| cpcolld | ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpcolld.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | cpcolld.2 | . . . . . 6 ⊢ (𝜑 → 𝑥𝐹𝑦) | |
| 3 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | breq2 5114 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥𝐹𝑧 ↔ 𝑥𝐹𝑦)) | |
| 5 | 3, 4 | elab 3649 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦) |
| 6 | 2, 5 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
| 7 | 6 | 19.8ad 2183 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
| 8 | 7 | scotteld 44242 | . . 3 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) |
| 9 | ssiun2 5014 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧}) | |
| 10 | dfcoll2 44248 | . . . . . . . 8 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧} | |
| 11 | 9, 10 | sseqtrrdi 3991 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴)) |
| 12 | 11 | sselda 3949 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴)) |
| 13 | 4 | elscottab 44240 | . . . . . . 7 ⊢ (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → 𝑥𝐹𝑦) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑥𝐹𝑦) |
| 15 | 12, 14 | jca 511 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
| 17 | 16 | eximdv 1917 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
| 18 | 1, 8, 17 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
| 19 | df-rex 3055 | . 2 ⊢ (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) | |
| 20 | 18, 19 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ∪ ciun 4958 class class class wbr 5110 Scott cscott 44231 Coll ccoll 44246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-r1 9724 df-rank 9725 df-scott 44232 df-coll 44247 |
| This theorem is referenced by: cpcoll2d 44255 |
| Copyright terms: Public domain | W3C validator |