Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpcolld Structured version   Visualization version   GIF version

Theorem cpcolld 44227
Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
cpcolld.1 (𝜑𝑥𝐴)
cpcolld.2 (𝜑𝑥𝐹𝑦)
Assertion
Ref Expression
cpcolld (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cpcolld
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cpcolld.1 . . 3 (𝜑𝑥𝐴)
2 cpcolld.2 . . . . . 6 (𝜑𝑥𝐹𝑦)
3 vex 3492 . . . . . . 7 𝑦 ∈ V
4 breq2 5170 . . . . . . 7 (𝑧 = 𝑦 → (𝑥𝐹𝑧𝑥𝐹𝑦))
53, 4elab 3694 . . . . . 6 (𝑦 ∈ {𝑧𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦)
62, 5sylibr 234 . . . . 5 (𝜑𝑦 ∈ {𝑧𝑥𝐹𝑧})
7619.8ad 2183 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ {𝑧𝑥𝐹𝑧})
87scotteld 44215 . . 3 (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧})
9 ssiun2 5070 . . . . . . . 8 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧})
10 dfcoll2 44221 . . . . . . . 8 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧}
119, 10sseqtrrdi 4060 . . . . . . 7 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴))
1211sselda 4008 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴))
134elscottab 44213 . . . . . . 7 (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → 𝑥𝐹𝑦)
1413adantl 481 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑥𝐹𝑦)
1512, 14jca 511 . . . . 5 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
1615ex 412 . . . 4 (𝑥𝐴 → (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
1716eximdv 1916 . . 3 (𝑥𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
181, 8, 17sylc 65 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
19 df-rex 3077 . 2 (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
2018, 19sylibr 234 1 (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1777  wcel 2108  {cab 2717  wrex 3076   ciun 5015   class class class wbr 5166  Scott cscott 44204   Coll ccoll 44219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834  df-scott 44205  df-coll 44220
This theorem is referenced by:  cpcoll2d  44228
  Copyright terms: Public domain W3C validator