Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpcolld Structured version   Visualization version   GIF version

Theorem cpcolld 43932
Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
cpcolld.1 (𝜑𝑥𝐴)
cpcolld.2 (𝜑𝑥𝐹𝑦)
Assertion
Ref Expression
cpcolld (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cpcolld
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cpcolld.1 . . 3 (𝜑𝑥𝐴)
2 cpcolld.2 . . . . . 6 (𝜑𝑥𝐹𝑦)
3 vex 3466 . . . . . . 7 𝑦 ∈ V
4 breq2 5157 . . . . . . 7 (𝑧 = 𝑦 → (𝑥𝐹𝑧𝑥𝐹𝑦))
53, 4elab 3666 . . . . . 6 (𝑦 ∈ {𝑧𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦)
62, 5sylibr 233 . . . . 5 (𝜑𝑦 ∈ {𝑧𝑥𝐹𝑧})
7619.8ad 2171 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ {𝑧𝑥𝐹𝑧})
87scotteld 43920 . . 3 (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧})
9 ssiun2 5055 . . . . . . . 8 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧})
10 dfcoll2 43926 . . . . . . . 8 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧}
119, 10sseqtrrdi 4031 . . . . . . 7 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴))
1211sselda 3979 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴))
134elscottab 43918 . . . . . . 7 (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → 𝑥𝐹𝑦)
1413adantl 480 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑥𝐹𝑦)
1512, 14jca 510 . . . . 5 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
1615ex 411 . . . 4 (𝑥𝐴 → (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
1716eximdv 1913 . . 3 (𝑥𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
181, 8, 17sylc 65 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
19 df-rex 3061 . 2 (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
2018, 19sylibr 233 1 (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wex 1774  wcel 2099  {cab 2703  wrex 3060   ciun 5001   class class class wbr 5153  Scott cscott 43909   Coll ccoll 43924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-r1 9807  df-rank 9808  df-scott 43910  df-coll 43925
This theorem is referenced by:  cpcoll2d  43933
  Copyright terms: Public domain W3C validator