![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cpcolld | Structured version Visualization version GIF version |
Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
cpcolld.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
cpcolld.2 | ⊢ (𝜑 → 𝑥𝐹𝑦) |
Ref | Expression |
---|---|
cpcolld | ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpcolld.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | cpcolld.2 | . . . . . 6 ⊢ (𝜑 → 𝑥𝐹𝑦) | |
3 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | breq2 5113 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥𝐹𝑧 ↔ 𝑥𝐹𝑦)) | |
5 | 3, 4 | elab 3634 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦) |
6 | 2, 5 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
7 | 6 | 19.8ad 2176 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
8 | 7 | scotteld 42618 | . . 3 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) |
9 | ssiun2 5011 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧}) | |
10 | dfcoll2 42624 | . . . . . . . 8 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧} | |
11 | 9, 10 | sseqtrrdi 3999 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴)) |
12 | 11 | sselda 3948 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴)) |
13 | 4 | elscottab 42616 | . . . . . . 7 ⊢ (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → 𝑥𝐹𝑦) |
14 | 13 | adantl 483 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑥𝐹𝑦) |
15 | 12, 14 | jca 513 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
16 | 15 | ex 414 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
17 | 16 | eximdv 1921 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
18 | 1, 8, 17 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
19 | df-rex 3071 | . 2 ⊢ (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) | |
20 | 18, 19 | sylibr 233 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3070 ∪ ciun 4958 class class class wbr 5109 Scott cscott 42607 Coll ccoll 42622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-r1 9708 df-rank 9709 df-scott 42608 df-coll 42623 |
This theorem is referenced by: cpcoll2d 42631 |
Copyright terms: Public domain | W3C validator |