![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cpcolld | Structured version Visualization version GIF version |
Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
cpcolld.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
cpcolld.2 | ⊢ (𝜑 → 𝑥𝐹𝑦) |
Ref | Expression |
---|---|
cpcolld | ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpcolld.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | cpcolld.2 | . . . . . 6 ⊢ (𝜑 → 𝑥𝐹𝑦) | |
3 | vex 3482 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | breq2 5152 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥𝐹𝑧 ↔ 𝑥𝐹𝑦)) | |
5 | 3, 4 | elab 3681 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦) |
6 | 2, 5 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
7 | 6 | 19.8ad 2180 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
8 | 7 | scotteld 44242 | . . 3 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) |
9 | ssiun2 5052 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧}) | |
10 | dfcoll2 44248 | . . . . . . . 8 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧} | |
11 | 9, 10 | sseqtrrdi 4047 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴)) |
12 | 11 | sselda 3995 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴)) |
13 | 4 | elscottab 44240 | . . . . . . 7 ⊢ (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → 𝑥𝐹𝑦) |
14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑥𝐹𝑦) |
15 | 12, 14 | jca 511 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
16 | 15 | ex 412 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
17 | 16 | eximdv 1915 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
18 | 1, 8, 17 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
19 | df-rex 3069 | . 2 ⊢ (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) | |
20 | 18, 19 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 {cab 2712 ∃wrex 3068 ∪ ciun 4996 class class class wbr 5148 Scott cscott 44231 Coll ccoll 44246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 df-rank 9803 df-scott 44232 df-coll 44247 |
This theorem is referenced by: cpcoll2d 44255 |
Copyright terms: Public domain | W3C validator |