Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpcolld Structured version   Visualization version   GIF version

Theorem cpcolld 41900
Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
cpcolld.1 (𝜑𝑥𝐴)
cpcolld.2 (𝜑𝑥𝐹𝑦)
Assertion
Ref Expression
cpcolld (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cpcolld
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cpcolld.1 . . 3 (𝜑𝑥𝐴)
2 cpcolld.2 . . . . . 6 (𝜑𝑥𝐹𝑦)
3 vex 3438 . . . . . . 7 𝑦 ∈ V
4 breq2 5081 . . . . . . 7 (𝑧 = 𝑦 → (𝑥𝐹𝑧𝑥𝐹𝑦))
53, 4elab 3611 . . . . . 6 (𝑦 ∈ {𝑧𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦)
62, 5sylibr 233 . . . . 5 (𝜑𝑦 ∈ {𝑧𝑥𝐹𝑧})
7619.8ad 2170 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ {𝑧𝑥𝐹𝑧})
87scotteld 41888 . . 3 (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧})
9 ssiun2 4980 . . . . . . . 8 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧})
10 dfcoll2 41894 . . . . . . . 8 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧}
119, 10sseqtrrdi 3974 . . . . . . 7 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴))
1211sselda 3923 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴))
134elscottab 41886 . . . . . . 7 (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → 𝑥𝐹𝑦)
1413adantl 481 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑥𝐹𝑦)
1512, 14jca 511 . . . . 5 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
1615ex 412 . . . 4 (𝑥𝐴 → (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
1716eximdv 1916 . . 3 (𝑥𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
181, 8, 17sylc 65 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
19 df-rex 3069 . 2 (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
2018, 19sylibr 233 1 (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1777  wcel 2101  {cab 2710  wrex 3068   ciun 4927   class class class wbr 5077  Scott cscott 41877   Coll ccoll 41892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-om 7733  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-r1 9550  df-rank 9551  df-scott 41878  df-coll 41893
This theorem is referenced by:  cpcoll2d  41901
  Copyright terms: Public domain W3C validator