| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cpcolld | Structured version Visualization version GIF version | ||
| Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| cpcolld.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| cpcolld.2 | ⊢ (𝜑 → 𝑥𝐹𝑦) |
| Ref | Expression |
|---|---|
| cpcolld | ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpcolld.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | cpcolld.2 | . . . . . 6 ⊢ (𝜑 → 𝑥𝐹𝑦) | |
| 3 | vex 3468 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | breq2 5128 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥𝐹𝑧 ↔ 𝑥𝐹𝑦)) | |
| 5 | 3, 4 | elab 3663 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦) |
| 6 | 2, 5 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
| 7 | 6 | 19.8ad 2183 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
| 8 | 7 | scotteld 44237 | . . 3 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) |
| 9 | ssiun2 5028 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧}) | |
| 10 | dfcoll2 44243 | . . . . . . . 8 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧} | |
| 11 | 9, 10 | sseqtrrdi 4005 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴)) |
| 12 | 11 | sselda 3963 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴)) |
| 13 | 4 | elscottab 44235 | . . . . . . 7 ⊢ (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → 𝑥𝐹𝑦) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑥𝐹𝑦) |
| 15 | 12, 14 | jca 511 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
| 17 | 16 | eximdv 1917 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
| 18 | 1, 8, 17 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
| 19 | df-rex 3062 | . 2 ⊢ (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) | |
| 20 | 18, 19 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∃wrex 3061 ∪ ciun 4972 class class class wbr 5124 Scott cscott 44226 Coll ccoll 44241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 df-rank 9784 df-scott 44227 df-coll 44242 |
| This theorem is referenced by: cpcoll2d 44250 |
| Copyright terms: Public domain | W3C validator |