Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cpcolld | Structured version Visualization version GIF version |
Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
cpcolld.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
cpcolld.2 | ⊢ (𝜑 → 𝑥𝐹𝑦) |
Ref | Expression |
---|---|
cpcolld | ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpcolld.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | cpcolld.2 | . . . . . 6 ⊢ (𝜑 → 𝑥𝐹𝑦) | |
3 | vex 3438 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | breq2 5081 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥𝐹𝑧 ↔ 𝑥𝐹𝑦)) | |
5 | 3, 4 | elab 3611 | . . . . . 6 ⊢ (𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦) |
6 | 2, 5 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
7 | 6 | 19.8ad 2170 | . . . 4 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ {𝑧 ∣ 𝑥𝐹𝑧}) |
8 | 7 | scotteld 41888 | . . 3 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) |
9 | ssiun2 4980 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧}) | |
10 | dfcoll2 41894 | . . . . . . . 8 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑧 ∣ 𝑥𝐹𝑧} | |
11 | 9, 10 | sseqtrrdi 3974 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → Scott {𝑧 ∣ 𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴)) |
12 | 11 | sselda 3923 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴)) |
13 | 4 | elscottab 41886 | . . . . . . 7 ⊢ (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → 𝑥𝐹𝑦) |
14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → 𝑥𝐹𝑦) |
15 | 12, 14 | jca 511 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
16 | 15 | ex 412 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
17 | 16 | eximdv 1916 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧 ∣ 𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))) |
18 | 1, 8, 17 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) |
19 | df-rex 3069 | . 2 ⊢ (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)) | |
20 | 18, 19 | sylibr 233 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2101 {cab 2710 ∃wrex 3068 ∪ ciun 4927 class class class wbr 5077 Scott cscott 41877 Coll ccoll 41892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-r1 9550 df-rank 9551 df-scott 41878 df-coll 41893 |
This theorem is referenced by: cpcoll2d 41901 |
Copyright terms: Public domain | W3C validator |