Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cpcolld Structured version   Visualization version   GIF version

Theorem cpcolld 44247
Description: Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
cpcolld.1 (𝜑𝑥𝐴)
cpcolld.2 (𝜑𝑥𝐹𝑦)
Assertion
Ref Expression
cpcolld (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cpcolld
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cpcolld.1 . . 3 (𝜑𝑥𝐴)
2 cpcolld.2 . . . . . 6 (𝜑𝑥𝐹𝑦)
3 vex 3451 . . . . . . 7 𝑦 ∈ V
4 breq2 5111 . . . . . . 7 (𝑧 = 𝑦 → (𝑥𝐹𝑧𝑥𝐹𝑦))
53, 4elab 3646 . . . . . 6 (𝑦 ∈ {𝑧𝑥𝐹𝑧} ↔ 𝑥𝐹𝑦)
62, 5sylibr 234 . . . . 5 (𝜑𝑦 ∈ {𝑧𝑥𝐹𝑧})
7619.8ad 2183 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ {𝑧𝑥𝐹𝑧})
87scotteld 44235 . . 3 (𝜑 → ∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧})
9 ssiun2 5011 . . . . . . . 8 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧})
10 dfcoll2 44241 . . . . . . . 8 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑧𝑥𝐹𝑧}
119, 10sseqtrrdi 3988 . . . . . . 7 (𝑥𝐴 → Scott {𝑧𝑥𝐹𝑧} ⊆ (𝐹 Coll 𝐴))
1211sselda 3946 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑦 ∈ (𝐹 Coll 𝐴))
134elscottab 44233 . . . . . . 7 (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → 𝑥𝐹𝑦)
1413adantl 481 . . . . . 6 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → 𝑥𝐹𝑦)
1512, 14jca 511 . . . . 5 ((𝑥𝐴𝑦 ∈ Scott {𝑧𝑥𝐹𝑧}) → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
1615ex 412 . . . 4 (𝑥𝐴 → (𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → (𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
1716eximdv 1917 . . 3 (𝑥𝐴 → (∃𝑦 𝑦 ∈ Scott {𝑧𝑥𝐹𝑧} → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦)))
181, 8, 17sylc 65 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
19 df-rex 3054 . 2 (∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦 ↔ ∃𝑦(𝑦 ∈ (𝐹 Coll 𝐴) ∧ 𝑥𝐹𝑦))
2018, 19sylibr 234 1 (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  {cab 2707  wrex 3053   ciun 4955   class class class wbr 5107  Scott cscott 44224   Coll ccoll 44239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718  df-scott 44225  df-coll 44240
This theorem is referenced by:  cpcoll2d  44248
  Copyright terms: Public domain W3C validator