Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > grucollcld | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
grucollcld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
grucollcld.2 | ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) |
grucollcld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
Ref | Expression |
---|---|
grucollcld | ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoll2 41759 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | |
2 | grucollcld.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
3 | grucollcld.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
4 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) | |
5 | 2 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ) |
6 | 3 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐴 ∈ 𝐺) |
7 | 5, 6 | gru0eld 41736 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺) |
8 | 4, 7 | eqeltrd 2839 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
9 | neq0 4276 | . . . . . . 7 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
10 | 2 | ad2antrr 722 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐺 ∈ Univ) |
11 | breq2 5074 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦 ↔ 𝑥𝐹𝑧)) | |
12 | 11 | elscottab 41751 | . . . . . . . . . . . . 13 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → 𝑥𝐹𝑧) |
13 | 12 | adantl 481 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥𝐹𝑧) |
14 | grucollcld.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) | |
15 | 14 | ad2antrr 722 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺)) |
16 | 15 | ssbrd 5113 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → (𝑥𝐹𝑧 → 𝑥(𝐺 × 𝐺)𝑧)) |
17 | 13, 16 | mpd 15 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧) |
18 | brxp 5627 | . . . . . . . . . . . 12 ⊢ (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥 ∈ 𝐺 ∧ 𝑧 ∈ 𝐺)) | |
19 | 18 | simprbi 496 | . . . . . . . . . . 11 ⊢ (𝑥(𝐺 × 𝐺)𝑧 → 𝑧 ∈ 𝐺) |
20 | 17, 19 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ 𝐺) |
21 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
22 | 10, 20, 21 | gruscottcld 41756 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
23 | 22 | expcom 413 | . . . . . . . 8 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
24 | 23 | exlimiv 1934 | . . . . . . 7 ⊢ (∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
25 | 9, 24 | sylbi 216 | . . . . . 6 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
26 | 25 | impcom 407 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
27 | 8, 26 | pm2.61dan 809 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
28 | 27 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
29 | gruiun 10486 | . . 3 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) | |
30 | 2, 3, 28, 29 | syl3anc 1369 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
31 | 1, 30 | eqeltrid 2843 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 ∪ ciun 4921 class class class wbr 5070 × cxp 5578 Univcgru 10477 Scott cscott 41742 Coll ccoll 41757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-tc 9426 df-r1 9453 df-rank 9454 df-card 9628 df-cf 9630 df-acn 9631 df-ac 9803 df-wina 10371 df-ina 10372 df-gru 10478 df-scott 41743 df-coll 41758 |
This theorem is referenced by: grumnudlem 41792 |
Copyright terms: Public domain | W3C validator |