Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grucollcld Structured version   Visualization version   GIF version

Theorem grucollcld 44352
Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
grucollcld.1 (𝜑𝐺 ∈ Univ)
grucollcld.2 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
grucollcld.3 (𝜑𝐴𝐺)
Assertion
Ref Expression
grucollcld (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)

Proof of Theorem grucollcld
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcoll2 44344 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
2 grucollcld.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grucollcld.3 . . 3 (𝜑𝐴𝐺)
4 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} = ∅)
52ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ)
63ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐴𝐺)
75, 6gru0eld 44321 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺)
84, 7eqeltrd 2831 . . . . 5 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
9 neq0 4299 . . . . . . 7 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
102ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐺 ∈ Univ)
11 breq2 5093 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
1211elscottab 44336 . . . . . . . . . . . . 13 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → 𝑥𝐹𝑧)
1312adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥𝐹𝑧)
14 grucollcld.2 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
1514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺))
1615ssbrd 5132 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → (𝑥𝐹𝑧𝑥(𝐺 × 𝐺)𝑧))
1713, 16mpd 15 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧)
18 brxp 5663 . . . . . . . . . . . 12 (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥𝐺𝑧𝐺))
1918simprbi 496 . . . . . . . . . . 11 (𝑥(𝐺 × 𝐺)𝑧𝑧𝐺)
2017, 19syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧𝐺)
21 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
2210, 20, 21gruscottcld 44341 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2322expcom 413 . . . . . . . 8 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2423exlimiv 1931 . . . . . . 7 (∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
259, 24sylbi 217 . . . . . 6 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2625impcom 407 . . . . 5 (((𝜑𝑥𝐴) ∧ ¬ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
278, 26pm2.61dan 812 . . . 4 ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2827ralrimiva 3124 . . 3 (𝜑 → ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
29 gruiun 10690 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺) → 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
302, 3, 28, 29syl3anc 1373 . 2 (𝜑 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
311, 30eqeltrid 2835 1 (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wss 3897  c0 4280   ciun 4939   class class class wbr 5089   × cxp 5612  Univcgru 10681  Scott cscott 44327   Coll ccoll 44342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-tc 9625  df-r1 9657  df-rank 9658  df-card 9832  df-cf 9834  df-acn 9835  df-ac 10007  df-wina 10575  df-ina 10576  df-gru 10682  df-scott 44328  df-coll 44343
This theorem is referenced by:  grumnudlem  44377
  Copyright terms: Public domain W3C validator