![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grucollcld | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
grucollcld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
grucollcld.2 | ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) |
grucollcld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
Ref | Expression |
---|---|
grucollcld | ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoll2 43587 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | |
2 | grucollcld.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
3 | grucollcld.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
4 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) | |
5 | 2 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ) |
6 | 3 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐴 ∈ 𝐺) |
7 | 5, 6 | gru0eld 43564 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺) |
8 | 4, 7 | eqeltrd 2827 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
9 | neq0 4340 | . . . . . . 7 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
10 | 2 | ad2antrr 723 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐺 ∈ Univ) |
11 | breq2 5145 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦 ↔ 𝑥𝐹𝑧)) | |
12 | 11 | elscottab 43579 | . . . . . . . . . . . . 13 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → 𝑥𝐹𝑧) |
13 | 12 | adantl 481 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥𝐹𝑧) |
14 | grucollcld.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) | |
15 | 14 | ad2antrr 723 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺)) |
16 | 15 | ssbrd 5184 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → (𝑥𝐹𝑧 → 𝑥(𝐺 × 𝐺)𝑧)) |
17 | 13, 16 | mpd 15 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧) |
18 | brxp 5718 | . . . . . . . . . . . 12 ⊢ (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥 ∈ 𝐺 ∧ 𝑧 ∈ 𝐺)) | |
19 | 18 | simprbi 496 | . . . . . . . . . . 11 ⊢ (𝑥(𝐺 × 𝐺)𝑧 → 𝑧 ∈ 𝐺) |
20 | 17, 19 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ 𝐺) |
21 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
22 | 10, 20, 21 | gruscottcld 43584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
23 | 22 | expcom 413 | . . . . . . . 8 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
24 | 23 | exlimiv 1925 | . . . . . . 7 ⊢ (∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
25 | 9, 24 | sylbi 216 | . . . . . 6 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
26 | 25 | impcom 407 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
27 | 8, 26 | pm2.61dan 810 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
28 | 27 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
29 | gruiun 10796 | . . 3 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) | |
30 | 2, 3, 28, 29 | syl3anc 1368 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
31 | 1, 30 | eqeltrid 2831 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2703 ∀wral 3055 ⊆ wss 3943 ∅c0 4317 ∪ ciun 4990 class class class wbr 5141 × cxp 5667 Univcgru 10787 Scott cscott 43570 Coll ccoll 43585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-reg 9589 ax-inf2 9638 ax-ac2 10460 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-tc 9734 df-r1 9761 df-rank 9762 df-card 9936 df-cf 9938 df-acn 9939 df-ac 10113 df-wina 10681 df-ina 10682 df-gru 10788 df-scott 43571 df-coll 43586 |
This theorem is referenced by: grumnudlem 43620 |
Copyright terms: Public domain | W3C validator |