| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grucollcld | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| grucollcld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
| grucollcld.2 | ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) |
| grucollcld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
| Ref | Expression |
|---|---|
| grucollcld | ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoll2 44248 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | |
| 2 | grucollcld.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
| 3 | grucollcld.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
| 4 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) | |
| 5 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ) |
| 6 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐴 ∈ 𝐺) |
| 7 | 5, 6 | gru0eld 44225 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺) |
| 8 | 4, 7 | eqeltrd 2829 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
| 9 | neq0 4318 | . . . . . . 7 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
| 10 | 2 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐺 ∈ Univ) |
| 11 | breq2 5114 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦 ↔ 𝑥𝐹𝑧)) | |
| 12 | 11 | elscottab 44240 | . . . . . . . . . . . . 13 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → 𝑥𝐹𝑧) |
| 13 | 12 | adantl 481 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥𝐹𝑧) |
| 14 | grucollcld.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) | |
| 15 | 14 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺)) |
| 16 | 15 | ssbrd 5153 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → (𝑥𝐹𝑧 → 𝑥(𝐺 × 𝐺)𝑧)) |
| 17 | 13, 16 | mpd 15 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧) |
| 18 | brxp 5690 | . . . . . . . . . . . 12 ⊢ (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥 ∈ 𝐺 ∧ 𝑧 ∈ 𝐺)) | |
| 19 | 18 | simprbi 496 | . . . . . . . . . . 11 ⊢ (𝑥(𝐺 × 𝐺)𝑧 → 𝑧 ∈ 𝐺) |
| 20 | 17, 19 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ 𝐺) |
| 21 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
| 22 | 10, 20, 21 | gruscottcld 44245 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
| 23 | 22 | expcom 413 | . . . . . . . 8 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
| 24 | 23 | exlimiv 1930 | . . . . . . 7 ⊢ (∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
| 25 | 9, 24 | sylbi 217 | . . . . . 6 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
| 26 | 25 | impcom 407 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
| 27 | 8, 26 | pm2.61dan 812 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
| 28 | 27 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
| 29 | gruiun 10759 | . . 3 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) | |
| 30 | 2, 3, 28, 29 | syl3anc 1373 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
| 31 | 1, 30 | eqeltrid 2833 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 ∪ ciun 4958 class class class wbr 5110 × cxp 5639 Univcgru 10750 Scott cscott 44231 Coll ccoll 44246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-tc 9697 df-r1 9724 df-rank 9725 df-card 9899 df-cf 9901 df-acn 9902 df-ac 10076 df-wina 10644 df-ina 10645 df-gru 10751 df-scott 44232 df-coll 44247 |
| This theorem is referenced by: grumnudlem 44281 |
| Copyright terms: Public domain | W3C validator |