Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grucollcld Structured version   Visualization version   GIF version

Theorem grucollcld 44249
Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
grucollcld.1 (𝜑𝐺 ∈ Univ)
grucollcld.2 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
grucollcld.3 (𝜑𝐴𝐺)
Assertion
Ref Expression
grucollcld (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)

Proof of Theorem grucollcld
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcoll2 44241 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
2 grucollcld.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grucollcld.3 . . 3 (𝜑𝐴𝐺)
4 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} = ∅)
52ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ)
63ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐴𝐺)
75, 6gru0eld 44218 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺)
84, 7eqeltrd 2828 . . . . 5 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
9 neq0 4315 . . . . . . 7 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
102ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐺 ∈ Univ)
11 breq2 5111 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
1211elscottab 44233 . . . . . . . . . . . . 13 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → 𝑥𝐹𝑧)
1312adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥𝐹𝑧)
14 grucollcld.2 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
1514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺))
1615ssbrd 5150 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → (𝑥𝐹𝑧𝑥(𝐺 × 𝐺)𝑧))
1713, 16mpd 15 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧)
18 brxp 5687 . . . . . . . . . . . 12 (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥𝐺𝑧𝐺))
1918simprbi 496 . . . . . . . . . . 11 (𝑥(𝐺 × 𝐺)𝑧𝑧𝐺)
2017, 19syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧𝐺)
21 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
2210, 20, 21gruscottcld 44238 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2322expcom 413 . . . . . . . 8 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2423exlimiv 1930 . . . . . . 7 (∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
259, 24sylbi 217 . . . . . 6 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2625impcom 407 . . . . 5 (((𝜑𝑥𝐴) ∧ ¬ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
278, 26pm2.61dan 812 . . . 4 ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2827ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
29 gruiun 10752 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺) → 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
302, 3, 28, 29syl3anc 1373 . 2 (𝜑 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
311, 30eqeltrid 2832 1 (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wss 3914  c0 4296   ciun 4955   class class class wbr 5107   × cxp 5636  Univcgru 10743  Scott cscott 44224   Coll ccoll 44239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-tc 9690  df-r1 9717  df-rank 9718  df-card 9892  df-cf 9894  df-acn 9895  df-ac 10069  df-wina 10637  df-ina 10638  df-gru 10744  df-scott 44225  df-coll 44240
This theorem is referenced by:  grumnudlem  44274
  Copyright terms: Public domain W3C validator