![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grucollcld | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
grucollcld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
grucollcld.2 | ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) |
grucollcld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐺) |
Ref | Expression |
---|---|
grucollcld | ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoll2 44221 | . 2 ⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | |
2 | grucollcld.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
3 | grucollcld.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐺) | |
4 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) | |
5 | 2 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ) |
6 | 3 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → 𝐴 ∈ 𝐺) |
7 | 5, 6 | gru0eld 44198 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺) |
8 | 4, 7 | eqeltrd 2844 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
9 | neq0 4375 | . . . . . . 7 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
10 | 2 | ad2antrr 725 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐺 ∈ Univ) |
11 | breq2 5170 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = 𝑧 → (𝑥𝐹𝑦 ↔ 𝑥𝐹𝑧)) | |
12 | 11 | elscottab 44213 | . . . . . . . . . . . . 13 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → 𝑥𝐹𝑧) |
13 | 12 | adantl 481 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥𝐹𝑧) |
14 | grucollcld.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) | |
15 | 14 | ad2antrr 725 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺)) |
16 | 15 | ssbrd 5209 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → (𝑥𝐹𝑧 → 𝑥(𝐺 × 𝐺)𝑧)) |
17 | 13, 16 | mpd 15 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧) |
18 | brxp 5749 | . . . . . . . . . . . 12 ⊢ (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥 ∈ 𝐺 ∧ 𝑧 ∈ 𝐺)) | |
19 | 18 | simprbi 496 | . . . . . . . . . . 11 ⊢ (𝑥(𝐺 × 𝐺)𝑧 → 𝑧 ∈ 𝐺) |
20 | 17, 19 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ 𝐺) |
21 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) | |
22 | 10, 20, 21 | gruscottcld 44218 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦}) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
23 | 22 | expcom 413 | . . . . . . . 8 ⊢ (𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
24 | 23 | exlimiv 1929 | . . . . . . 7 ⊢ (∃𝑧 𝑧 ∈ Scott {𝑦 ∣ 𝑥𝐹𝑦} → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
25 | 9, 24 | sylbi 217 | . . . . . 6 ⊢ (¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅ → ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺)) |
26 | 25 | impcom 407 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ Scott {𝑦 ∣ 𝑥𝐹𝑦} = ∅) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
27 | 8, 26 | pm2.61dan 812 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
28 | 27 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
29 | gruiun 10868 | . . 3 ⊢ ((𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∀𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) | |
30 | 2, 3, 28, 29 | syl3anc 1371 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} ∈ 𝐺) |
31 | 1, 30 | eqeltrid 2848 | 1 ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 ∪ ciun 5015 class class class wbr 5166 × cxp 5698 Univcgru 10859 Scott cscott 44204 Coll ccoll 44219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-tc 9806 df-r1 9833 df-rank 9834 df-card 10008 df-cf 10010 df-acn 10011 df-ac 10185 df-wina 10753 df-ina 10754 df-gru 10860 df-scott 44205 df-coll 44220 |
This theorem is referenced by: grumnudlem 44254 |
Copyright terms: Public domain | W3C validator |