Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grucollcld Structured version   Visualization version   GIF version

Theorem grucollcld 44256
Description: A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
grucollcld.1 (𝜑𝐺 ∈ Univ)
grucollcld.2 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
grucollcld.3 (𝜑𝐴𝐺)
Assertion
Ref Expression
grucollcld (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)

Proof of Theorem grucollcld
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcoll2 44248 . 2 (𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
2 grucollcld.1 . . 3 (𝜑𝐺 ∈ Univ)
3 grucollcld.3 . . 3 (𝜑𝐴𝐺)
4 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} = ∅)
52ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐺 ∈ Univ)
63ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → 𝐴𝐺)
75, 6gru0eld 44225 . . . . . 6 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → ∅ ∈ 𝐺)
84, 7eqeltrd 2829 . . . . 5 (((𝜑𝑥𝐴) ∧ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
9 neq0 4318 . . . . . . 7 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ ↔ ∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
102ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐺 ∈ Univ)
11 breq2 5114 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥𝐹𝑦𝑥𝐹𝑧))
1211elscottab 44240 . . . . . . . . . . . . 13 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → 𝑥𝐹𝑧)
1312adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥𝐹𝑧)
14 grucollcld.2 . . . . . . . . . . . . . 14 (𝜑𝐹 ⊆ (𝐺 × 𝐺))
1514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝐹 ⊆ (𝐺 × 𝐺))
1615ssbrd 5153 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → (𝑥𝐹𝑧𝑥(𝐺 × 𝐺)𝑧))
1713, 16mpd 15 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑥(𝐺 × 𝐺)𝑧)
18 brxp 5690 . . . . . . . . . . . 12 (𝑥(𝐺 × 𝐺)𝑧 ↔ (𝑥𝐺𝑧𝐺))
1918simprbi 496 . . . . . . . . . . 11 (𝑥(𝐺 × 𝐺)𝑧𝑧𝐺)
2017, 19syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧𝐺)
21 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦})
2210, 20, 21gruscottcld 44245 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦}) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2322expcom 413 . . . . . . . 8 (𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2423exlimiv 1930 . . . . . . 7 (∃𝑧 𝑧 ∈ Scott {𝑦𝑥𝐹𝑦} → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
259, 24sylbi 217 . . . . . 6 (¬ Scott {𝑦𝑥𝐹𝑦} = ∅ → ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺))
2625impcom 407 . . . . 5 (((𝜑𝑥𝐴) ∧ ¬ Scott {𝑦𝑥𝐹𝑦} = ∅) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
278, 26pm2.61dan 812 . . . 4 ((𝜑𝑥𝐴) → Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
2827ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
29 gruiun 10759 . . 3 ((𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∀𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺) → 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
302, 3, 28, 29syl3anc 1373 . 2 (𝜑 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦} ∈ 𝐺)
311, 30eqeltrid 2833 1 (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  wss 3917  c0 4299   ciun 4958   class class class wbr 5110   × cxp 5639  Univcgru 10750  Scott cscott 44231   Coll ccoll 44246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-tc 9697  df-r1 9724  df-rank 9725  df-card 9899  df-cf 9901  df-acn 9902  df-ac 10076  df-wina 10644  df-ina 10645  df-gru 10751  df-scott 44232  df-coll 44247
This theorem is referenced by:  grumnudlem  44281
  Copyright terms: Public domain W3C validator