Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version |
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1784 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | eq0 4274 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
3 | 1, 2 | xchbinxr 334 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-dif 3886 df-nul 4254 |
This theorem is referenced by: n0 4277 ralidmOLD 4443 falseral0 4447 snprc 4650 pwpw0 4743 sssn 4756 pwsnOLD 4829 uni0b 4864 disjor 5050 rnep 5825 isomin 7188 mpoxneldm 7999 mpoxopynvov0g 8001 mpoxopxnop0 8002 erdisj 8508 ixpprc 8665 sucdom2 8822 domunsn 8863 isinf 8965 nfielex 8976 enp1i 8982 xpfi 9015 scottex 9574 acndom 9738 axcclem 10144 axpowndlem3 10286 canthp1lem1 10339 isumltss 15488 pf1rcl 21425 ppttop 22065 ntreq0 22136 txindis 22693 txconn 22748 fmfnfm 23017 ptcmplem2 23112 ptcmplem3 23113 bddmulibl 24908 g0wlk0 27921 wwlksnndef 28171 strlem1 30513 disjorf 30819 ddemeas 32104 tgoldbachgt 32543 bnj1143 32670 prv1n 33293 pibt2 35515 poimirlem25 35729 poimirlem27 35731 ineleq 36413 eqvreldisj 36654 grucollcld 41767 fnchoice 42461 founiiun0 42617 nzerooringczr 45518 mo0sn 46049 map0cor 46070 |
Copyright terms: Public domain | W3C validator |