![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version |
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2926 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | neq0f 4187 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1507 ∃wex 1742 ∈ wcel 2048 ∅c0 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-dif 3828 df-nul 4174 |
This theorem is referenced by: ralidm 4332 falseral0 4336 snprc 4521 pwpw0 4614 sssn 4627 pwsnALT 4699 uni0b 4731 disjor 4905 isomin 6907 mpoxneldm 7674 mpoxopynvov0g 7676 mpoxopxnop0 7677 erdisj 8133 ixpprc 8272 domunsn 8455 sucdom2 8501 isinf 8518 nfielex 8534 enp1i 8540 xpfi 8576 scottex 9100 acndom 9263 axcclem 9669 axpowndlem3 9811 canthp1lem1 9864 isumltss 15053 pf1rcl 20204 ppttop 21309 ntreq0 21379 txindis 21936 txconn 21991 fmfnfm 22260 ptcmplem2 22355 ptcmplem3 22356 bddmulibl 24132 g0wlk0 27126 wwlksnndef 27394 strlem1 29798 disjorf 30085 ddemeas 31097 tgoldbachgt 31543 bnj1143 31671 pibt2 34074 poimirlem25 34306 poimirlem27 34308 ineleq 35002 eqvreldisj 35242 grucollcld 39916 fnchoice 40649 founiiun0 40821 nzerooringczr 43647 |
Copyright terms: Public domain | W3C validator |