![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version |
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
Ref | Expression |
---|---|
neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1778 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | eq0 4373 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-dif 3979 df-nul 4353 |
This theorem is referenced by: n0 4376 falseral0 4539 snprc 4742 pwpw0 4838 sssn 4851 uni0b 4957 disjor 5148 rnep 5951 isomin 7373 mpoxneldm 8253 mpoxopynvov0g 8255 mpoxopxnop0 8256 erdisj 8817 ixpprc 8977 sucdom2OLD 9148 domunsn 9193 sucdom2 9269 isinf 9323 isinfOLD 9324 nfielex 9335 enp1iOLD 9342 xpfiOLD 9387 scottex 9954 acndom 10120 axcclem 10526 axpowndlem3 10668 canthp1lem1 10721 isumltss 15896 nzerooringczr 21514 pf1rcl 22374 ppttop 23035 ntreq0 23106 txindis 23663 txconn 23718 fmfnfm 23987 ptcmplem2 24082 ptcmplem3 24083 bddmulibl 25894 g0wlk0 29688 wwlksnndef 29938 strlem1 32282 disjorf 32601 ssdifidlprm 33451 1arithufdlem4 33540 ddemeas 34200 tgoldbachgt 34640 bnj1143 34766 prv1n 35399 pibt2 37383 poimirlem25 37605 poimirlem27 37607 ineleq 38310 eqvreldisj 38570 grucollcld 44229 fnchoice 44929 founiiun0 45097 mo0sn 48547 map0cor 48568 |
Copyright terms: Public domain | W3C validator |