| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version | ||
| Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2157, ax-12 2177. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | eq0 4325 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: n0 4328 falseral0 4491 snprc 4693 pwpw0 4789 sssn 4802 uni0b 4909 disjor 5101 rnep 5906 isomin 7330 mpoxneldm 8211 mpoxopynvov0g 8213 mpoxopxnop0 8214 erdisj 8773 ixpprc 8933 sucdom2OLD 9096 domunsn 9141 sucdom2 9217 isinf 9268 isinfOLD 9269 nfielex 9279 enp1iOLD 9286 xpfiOLD 9331 scottex 9899 acndom 10065 axcclem 10471 axpowndlem3 10613 canthp1lem1 10666 isumltss 15864 nzerooringczr 21441 pf1rcl 22287 ppttop 22945 ntreq0 23015 txindis 23572 txconn 23627 fmfnfm 23896 ptcmplem2 23991 ptcmplem3 23992 bddmulibl 25792 g0wlk0 29632 wwlksnndef 29887 strlem1 32231 disjorf 32560 ssdifidlprm 33473 1arithufdlem4 33562 ddemeas 34267 tgoldbachgt 34695 bnj1143 34821 prv1n 35453 pibt2 37435 poimirlem25 37669 poimirlem27 37671 ineleq 38372 eqvreldisj 38632 grucollcld 44284 relpmin 44977 fnchoice 45053 founiiun0 45214 mo0sn 48794 map0cor 48833 termchom 49373 |
| Copyright terms: Public domain | W3C validator |