Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version |
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | eq0 4277 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-dif 3890 df-nul 4257 |
This theorem is referenced by: n0 4280 ralidmOLD 4446 falseral0 4450 snprc 4653 pwpw0 4746 sssn 4759 pwsnOLD 4832 uni0b 4867 disjor 5054 rnep 5836 isomin 7208 mpoxneldm 8028 mpoxopynvov0g 8030 mpoxopxnop0 8031 erdisj 8550 ixpprc 8707 sucdom2OLD 8869 domunsn 8914 sucdom2 8989 isinf 9036 nfielex 9047 enp1i 9052 xpfi 9085 scottex 9643 acndom 9807 axcclem 10213 axpowndlem3 10355 canthp1lem1 10408 isumltss 15560 pf1rcl 21515 ppttop 22157 ntreq0 22228 txindis 22785 txconn 22840 fmfnfm 23109 ptcmplem2 23204 ptcmplem3 23205 bddmulibl 25003 g0wlk0 28019 wwlksnndef 28270 strlem1 30612 disjorf 30918 ddemeas 32204 tgoldbachgt 32643 bnj1143 32770 prv1n 33393 pibt2 35588 poimirlem25 35802 poimirlem27 35804 ineleq 36486 eqvreldisj 36727 grucollcld 41878 fnchoice 42572 founiiun0 42728 nzerooringczr 45630 mo0sn 46161 map0cor 46182 |
Copyright terms: Public domain | W3C validator |