| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version | ||
| Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2162, ax-12 2182. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1781 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | eq0 4299 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: n0 4302 falseral0 4465 snprc 4669 pwpw0 4764 sssn 4777 uni0b 4884 disjor 5075 rnep 5871 isomin 7277 mpoxneldm 8148 mpoxopynvov0g 8150 mpoxopxnop0 8151 erdisj 8685 ixpprc 8849 domunsn 9047 sucdom2 9119 isinf 9156 nfielex 9165 scottex 9785 acndom 9949 axcclem 10355 axpowndlem3 10497 canthp1lem1 10550 isumltss 15757 nzerooringczr 21419 pf1rcl 22265 ppttop 22923 ntreq0 22993 txindis 23550 txconn 23605 fmfnfm 23874 ptcmplem2 23969 ptcmplem3 23970 bddmulibl 25768 g0wlk0 29631 wwlksnndef 29885 strlem1 32232 disjorf 32561 ssdifidlprm 33430 1arithufdlem4 33519 ddemeas 34270 tgoldbachgt 34697 bnj1143 34823 prv1n 35496 pibt2 37482 poimirlem25 37705 poimirlem27 37707 ineleq 38406 dmcnvep 38432 eqvreldisj 38730 grucollcld 44377 relpmin 45069 fnchoice 45150 founiiun0 45311 mo0sn 48940 map0cor 48979 termchom 49613 |
| Copyright terms: Public domain | W3C validator |