| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version | ||
| Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | eq0 4313 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: n0 4316 falseral0 4479 snprc 4681 pwpw0 4777 sssn 4790 uni0b 4897 disjor 5089 rnep 5890 isomin 7312 mpoxneldm 8191 mpoxopynvov0g 8193 mpoxopxnop0 8194 erdisj 8728 ixpprc 8892 domunsn 9091 sucdom2 9167 isinf 9207 isinfOLD 9208 nfielex 9218 enp1iOLD 9225 xpfiOLD 9270 scottex 9838 acndom 10004 axcclem 10410 axpowndlem3 10552 canthp1lem1 10605 isumltss 15814 nzerooringczr 21390 pf1rcl 22236 ppttop 22894 ntreq0 22964 txindis 23521 txconn 23576 fmfnfm 23845 ptcmplem2 23940 ptcmplem3 23941 bddmulibl 25740 g0wlk0 29580 wwlksnndef 29835 strlem1 32179 disjorf 32508 ssdifidlprm 33429 1arithufdlem4 33518 ddemeas 34226 tgoldbachgt 34654 bnj1143 34780 prv1n 35418 pibt2 37405 poimirlem25 37639 poimirlem27 37641 ineleq 38336 dmcnvep 38361 eqvreldisj 38605 grucollcld 44249 relpmin 44942 fnchoice 45023 founiiun0 45184 mo0sn 48804 map0cor 48843 termchom 49477 |
| Copyright terms: Public domain | W3C validator |