Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version |
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2153, ax-12 2170. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1781 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
2 | eq0 4290 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
3 | 1, 2 | xchbinxr 334 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∅c0 4269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-dif 3901 df-nul 4270 |
This theorem is referenced by: n0 4293 ralidmOLD 4460 falseral0 4464 snprc 4665 pwpw0 4760 sssn 4773 pwsnOLD 4845 uni0b 4881 disjor 5072 rnep 5868 isomin 7264 mpoxneldm 8098 mpoxopynvov0g 8100 mpoxopxnop0 8101 erdisj 8621 ixpprc 8778 sucdom2OLD 8947 domunsn 8992 sucdom2 9071 isinf 9125 isinfOLD 9126 nfielex 9138 enp1iOLD 9145 xpfiOLD 9183 scottex 9742 acndom 9908 axcclem 10314 axpowndlem3 10456 canthp1lem1 10509 isumltss 15659 pf1rcl 21621 ppttop 22263 ntreq0 22334 txindis 22891 txconn 22946 fmfnfm 23215 ptcmplem2 23310 ptcmplem3 23311 bddmulibl 25109 g0wlk0 28308 wwlksnndef 28558 strlem1 30900 disjorf 31205 ddemeas 32502 tgoldbachgt 32943 bnj1143 33069 prv1n 33692 pibt2 35693 poimirlem25 35907 poimirlem27 35909 ineleq 36620 eqvreldisj 36881 grucollcld 42199 fnchoice 42893 founiiun0 43055 nzerooringczr 45981 mo0sn 46512 map0cor 46533 |
Copyright terms: Public domain | W3C validator |