| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version | ||
| Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | eq0 4303 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: n0 4306 falseral0 4469 snprc 4671 pwpw0 4767 sssn 4780 uni0b 4887 disjor 5077 rnep 5873 isomin 7278 mpoxneldm 8152 mpoxopynvov0g 8154 mpoxopxnop0 8155 erdisj 8689 ixpprc 8853 domunsn 9051 sucdom2 9127 isinf 9165 isinfOLD 9166 nfielex 9176 enp1iOLD 9183 xpfiOLD 9228 scottex 9800 acndom 9964 axcclem 10370 axpowndlem3 10512 canthp1lem1 10565 isumltss 15773 nzerooringczr 21405 pf1rcl 22252 ppttop 22910 ntreq0 22980 txindis 23537 txconn 23592 fmfnfm 23861 ptcmplem2 23956 ptcmplem3 23957 bddmulibl 25756 g0wlk0 29614 wwlksnndef 29868 strlem1 32212 disjorf 32541 ssdifidlprm 33405 1arithufdlem4 33494 ddemeas 34202 tgoldbachgt 34630 bnj1143 34756 prv1n 35403 pibt2 37390 poimirlem25 37624 poimirlem27 37626 ineleq 38321 dmcnvep 38346 eqvreldisj 38590 grucollcld 44233 relpmin 44926 fnchoice 45007 founiiun0 45168 mo0sn 48801 map0cor 48840 termchom 49474 |
| Copyright terms: Public domain | W3C validator |