| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version | ||
| Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | eq0 4316 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: n0 4319 falseral0 4482 snprc 4684 pwpw0 4780 sssn 4793 uni0b 4900 disjor 5092 rnep 5893 isomin 7315 mpoxneldm 8194 mpoxopynvov0g 8196 mpoxopxnop0 8197 erdisj 8731 ixpprc 8895 sucdom2OLD 9056 domunsn 9097 sucdom2 9173 isinf 9214 isinfOLD 9215 nfielex 9225 enp1iOLD 9232 xpfiOLD 9277 scottex 9845 acndom 10011 axcclem 10417 axpowndlem3 10559 canthp1lem1 10612 isumltss 15821 nzerooringczr 21397 pf1rcl 22243 ppttop 22901 ntreq0 22971 txindis 23528 txconn 23583 fmfnfm 23852 ptcmplem2 23947 ptcmplem3 23948 bddmulibl 25747 g0wlk0 29587 wwlksnndef 29842 strlem1 32186 disjorf 32515 ssdifidlprm 33436 1arithufdlem4 33525 ddemeas 34233 tgoldbachgt 34661 bnj1143 34787 prv1n 35425 pibt2 37412 poimirlem25 37646 poimirlem27 37648 ineleq 38343 dmcnvep 38368 eqvreldisj 38612 grucollcld 44256 relpmin 44949 fnchoice 45030 founiiun0 45191 mo0sn 48808 map0cor 48847 termchom 49481 |
| Copyright terms: Public domain | W3C validator |