| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neq0 | Structured version Visualization version GIF version | ||
| Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2160, ax-12 2180. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| neq0 | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1781 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 2 | eq0 4300 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ 𝐴 = ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: n0 4303 falseral0 4466 snprc 4670 pwpw0 4765 sssn 4778 uni0b 4885 disjor 5073 rnep 5867 isomin 7271 mpoxneldm 8142 mpoxopynvov0g 8144 mpoxopxnop0 8145 erdisj 8679 ixpprc 8843 domunsn 9040 sucdom2 9112 isinf 9149 nfielex 9158 scottex 9775 acndom 9939 axcclem 10345 axpowndlem3 10487 canthp1lem1 10540 isumltss 15752 nzerooringczr 21415 pf1rcl 22262 ppttop 22920 ntreq0 22990 txindis 23547 txconn 23602 fmfnfm 23871 ptcmplem2 23966 ptcmplem3 23967 bddmulibl 25765 g0wlk0 29627 wwlksnndef 29881 strlem1 32225 disjorf 32554 ssdifidlprm 33418 1arithufdlem4 33507 ddemeas 34244 tgoldbachgt 34671 bnj1143 34797 prv1n 35463 pibt2 37450 poimirlem25 37684 poimirlem27 37686 ineleq 38381 dmcnvep 38406 eqvreldisj 38650 grucollcld 44292 relpmin 44984 fnchoice 45065 founiiun0 45226 mo0sn 48846 map0cor 48885 termchom 49519 |
| Copyright terms: Public domain | W3C validator |