Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eq0rdvALT | Structured version Visualization version GIF version |
Description: Alternate proof of eq0rdv 4319. Shorter, but requiring df-clel 2816, ax-8 2112. (Contributed by NM, 11-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eq0rdvALT.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eq0rdvALT | ⊢ (𝜑 → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0rdvALT.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
2 | 1 | pm2.21d 121 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∅)) |
3 | 2 | ssrdv 3907 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∅) |
4 | ss0 4313 | . 2 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-dif 3869 df-in 3873 df-ss 3883 df-nul 4238 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |