MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0rdvALT Structured version   Visualization version   GIF version

Theorem eq0rdvALT 4353
Description: Alternate proof of eq0rdv 4352. Shorter, but requiring df-clel 2806, ax-8 2113. (Contributed by NM, 11-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
eq0rdvALT.1 (𝜑 → ¬ 𝑥𝐴)
Assertion
Ref Expression
eq0rdvALT (𝜑𝐴 = ∅)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem eq0rdvALT
StepHypRef Expression
1 eq0rdvALT.1 . . . 4 (𝜑 → ¬ 𝑥𝐴)
21pm2.21d 121 . . 3 (𝜑 → (𝑥𝐴𝑥 ∈ ∅))
32ssrdv 3935 . 2 (𝜑𝐴 ⊆ ∅)
4 ss0 4347 . 2 (𝐴 ⊆ ∅ → 𝐴 = ∅)
53, 4syl 17 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  wss 3897  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-dif 3900  df-ss 3914  df-nul 4279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator