| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0rdvALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of eq0rdv 4372. Shorter, but requiring df-clel 2804, ax-8 2111. (Contributed by NM, 11-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eq0rdvALT.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eq0rdvALT | ⊢ (𝜑 → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdvALT.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
| 2 | 1 | pm2.21d 121 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∅)) |
| 3 | 2 | ssrdv 3954 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∅) |
| 4 | ss0 4367 | . 2 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3919 df-ss 3933 df-nul 4299 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |