| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
| Ref | Expression |
|---|---|
| csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3775 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | falim 1557 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
| 3 | 1, 2 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
| 4 | 3 | abbidv 2801 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
| 5 | df-csb 3875 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | fal 1554 | . . . 4 ⊢ ¬ ⊥ | |
| 7 | 6 | abf 4381 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
| 8 | 7 | eqcomi 2744 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
| 9 | 4, 5, 8 | 3eqtr4g 2795 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ⊥wfal 1552 ∈ wcel 2108 {cab 2713 Vcvv 3459 [wsbc 3765 ⦋csb 3874 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: csb0 4385 sbcel12 4386 sbcne12 4390 sbcel2 4393 csbidm 4408 csbun 4416 csbin 4417 csbdif 4499 csbif 4558 csbuni 4912 sbcbr123 5173 sbcbr 5174 csbexg 5280 csbopab 5530 csbxp 5754 csbres 5969 csbima12 6066 csbrn 6192 csbiota 6524 csbfv12 6924 csbfv 6926 csbriota 7377 csbov123 7449 csbov 7450 |
| Copyright terms: Public domain | W3C validator |