Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version |
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
Ref | Expression |
---|---|
csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3721 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | falim 1556 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
3 | 1, 2 | pm5.21ni 378 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
4 | 3 | abbidv 2808 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
5 | df-csb 3829 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
6 | fal 1553 | . . . 4 ⊢ ¬ ⊥ | |
7 | 6 | abf 4333 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
8 | 7 | eqcomi 2747 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
9 | 4, 5, 8 | 3eqtr4g 2804 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ⊥wfal 1551 ∈ wcel 2108 {cab 2715 Vcvv 3422 [wsbc 3711 ⦋csb 3828 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-nul 4254 |
This theorem is referenced by: csb0 4338 sbcel12 4339 sbcne12 4343 sbcel2 4346 csbidm 4361 csbun 4369 csbin 4370 csbdif 4455 csbif 4513 csbuni 4867 sbcbr123 5124 sbcbr 5125 csbexg 5229 csbopab 5461 csbxp 5676 csbres 5883 csbima12 5976 csbrn 6095 csbiota 6411 csbfv12 6799 csbfv 6801 csbriota 7228 csbov123 7297 csbov 7298 |
Copyright terms: Public domain | W3C validator |