Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version |
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
Ref | Expression |
---|---|
csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3726 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | falim 1556 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
3 | 1, 2 | pm5.21ni 379 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
4 | 3 | abbidv 2807 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
5 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
6 | fal 1553 | . . . 4 ⊢ ¬ ⊥ | |
7 | 6 | abf 4336 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
8 | 7 | eqcomi 2747 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
9 | 4, 5, 8 | 3eqtr4g 2803 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ⊥wfal 1551 ∈ wcel 2106 {cab 2715 Vcvv 3432 [wsbc 3716 ⦋csb 3832 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-nul 4257 |
This theorem is referenced by: csb0 4341 sbcel12 4342 sbcne12 4346 sbcel2 4349 csbidm 4364 csbun 4372 csbin 4373 csbdif 4458 csbif 4516 csbuni 4870 sbcbr123 5128 sbcbr 5129 csbexg 5234 csbopab 5468 csbxp 5686 csbres 5894 csbima12 5987 csbrn 6106 csbiota 6426 csbfv12 6817 csbfv 6819 csbriota 7248 csbov123 7317 csbov 7318 |
Copyright terms: Public domain | W3C validator |