MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprc Structured version   Visualization version   GIF version

Theorem csbprc 4357
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3749 . . . 4 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
2 falim 1558 . . . 4 (⊥ → 𝐴 ∈ V)
31, 2pm5.21ni 377 . . 3 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
43abbidv 2796 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
5 df-csb 3849 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 fal 1555 . . . 4 ¬ ⊥
76abf 4354 . . 3 {𝑦 ∣ ⊥} = ∅
87eqcomi 2739 . 2 ∅ = {𝑦 ∣ ⊥}
94, 5, 83eqtr4g 2790 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wfal 1553  wcel 2110  {cab 2708  Vcvv 3434  [wsbc 3739  csb 3848  c0 4281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-nul 4282
This theorem is referenced by:  csb0  4358  sbcel12  4359  sbcne12  4363  sbcel2  4366  csbidm  4381  csbun  4389  csbin  4390  csbdif  4472  csbif  4531  csbuni  4886  sbcbr123  5143  sbcbr  5144  csbexg  5246  csbopab  5493  csbxp  5714  csbres  5928  csbima12  6025  csbrn  6147  csbiota  6470  csbfv12  6862  csbfv  6864  csbriota  7313  csbov123  7385  csbov  7386
  Copyright terms: Public domain W3C validator