MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprc Structured version   Visualization version   GIF version

Theorem csbprc 4372
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3763 . . . 4 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
2 falim 1557 . . . 4 (⊥ → 𝐴 ∈ V)
31, 2pm5.21ni 377 . . 3 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
43abbidv 2795 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
5 df-csb 3863 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 fal 1554 . . . 4 ¬ ⊥
76abf 4369 . . 3 {𝑦 ∣ ⊥} = ∅
87eqcomi 2738 . 2 ∅ = {𝑦 ∣ ⊥}
94, 5, 83eqtr4g 2789 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wfal 1552  wcel 2109  {cab 2707  Vcvv 3447  [wsbc 3753  csb 3862  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-nul 4297
This theorem is referenced by:  csb0  4373  sbcel12  4374  sbcne12  4378  sbcel2  4381  csbidm  4396  csbun  4404  csbin  4405  csbdif  4487  csbif  4546  csbuni  4900  sbcbr123  5161  sbcbr  5162  csbexg  5265  csbopab  5515  csbxp  5738  csbres  5953  csbima12  6050  csbrn  6176  csbiota  6504  csbfv12  6906  csbfv  6908  csbriota  7359  csbov123  7431  csbov  7432
  Copyright terms: Public domain W3C validator