MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprc Structured version   Visualization version   GIF version

Theorem csbprc 4406
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3787 . . . 4 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
2 falim 1558 . . . 4 (⊥ → 𝐴 ∈ V)
31, 2pm5.21ni 378 . . 3 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
43abbidv 2801 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
5 df-csb 3894 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 fal 1555 . . . 4 ¬ ⊥
76abf 4402 . . 3 {𝑦 ∣ ⊥} = ∅
87eqcomi 2741 . 2 ∅ = {𝑦 ∣ ⊥}
94, 5, 83eqtr4g 2797 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wfal 1553  wcel 2106  {cab 2709  Vcvv 3474  [wsbc 3777  csb 3893  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-nul 4323
This theorem is referenced by:  csb0  4407  sbcel12  4408  sbcne12  4412  sbcel2  4415  csbidm  4430  csbun  4438  csbin  4439  csbdif  4527  csbif  4585  csbuni  4940  sbcbr123  5202  sbcbr  5203  csbexg  5310  csbopab  5555  csbxp  5775  csbres  5984  csbima12  6078  csbrn  6202  csbiota  6536  csbfv12  6939  csbfv  6941  csbriota  7380  csbov123  7450  csbov  7451
  Copyright terms: Public domain W3C validator