![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version |
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
Ref | Expression |
---|---|
csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3814 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | falim 1554 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
3 | 1, 2 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
4 | 3 | abbidv 2811 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
5 | df-csb 3922 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
6 | fal 1551 | . . . 4 ⊢ ¬ ⊥ | |
7 | 6 | abf 4429 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
8 | 7 | eqcomi 2749 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
9 | 4, 5, 8 | 3eqtr4g 2805 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ⊥wfal 1549 ∈ wcel 2108 {cab 2717 Vcvv 3488 [wsbc 3804 ⦋csb 3921 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-nul 4353 |
This theorem is referenced by: csb0 4433 sbcel12 4434 sbcne12 4438 sbcel2 4441 csbidm 4456 csbun 4464 csbin 4465 csbdif 4547 csbif 4605 csbuni 4960 sbcbr123 5220 sbcbr 5221 csbexg 5328 csbopab 5574 csbxp 5799 csbres 6012 csbima12 6108 csbrn 6234 csbiota 6566 csbfv12 6968 csbfv 6970 csbriota 7420 csbov123 7492 csbov 7493 |
Copyright terms: Public domain | W3C validator |