Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version |
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
Ref | Expression |
---|---|
csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3704 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | falim 1560 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
3 | 1, 2 | pm5.21ni 382 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
4 | 3 | abbidv 2807 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
5 | df-csb 3812 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
6 | fal 1557 | . . . 4 ⊢ ¬ ⊥ | |
7 | 6 | abf 4317 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
8 | 7 | eqcomi 2746 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
9 | 4, 5, 8 | 3eqtr4g 2803 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ⊥wfal 1555 ∈ wcel 2110 {cab 2714 Vcvv 3408 [wsbc 3694 ⦋csb 3811 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-nul 4238 |
This theorem is referenced by: csb0 4322 sbcel12 4323 sbcne12 4327 sbcel2 4330 csbidm 4345 csbun 4353 csbin 4354 csbif 4496 csbuni 4850 sbcbr123 5107 sbcbr 5108 csbexg 5203 csbopab 5436 csbxp 5647 csbres 5854 csbima12 5947 csbrn 6066 csbiota 6373 csbfv12 6760 csbfv 6762 csbriota 7186 csbov123 7255 csbov 7256 csbdif 35233 |
Copyright terms: Public domain | W3C validator |