| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
| Ref | Expression |
|---|---|
| csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3766 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | falim 1557 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
| 3 | 1, 2 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
| 4 | 3 | abbidv 2796 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
| 5 | df-csb 3866 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | fal 1554 | . . . 4 ⊢ ¬ ⊥ | |
| 7 | 6 | abf 4372 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
| 8 | 7 | eqcomi 2739 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
| 9 | 4, 5, 8 | 3eqtr4g 2790 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ⊥wfal 1552 ∈ wcel 2109 {cab 2708 Vcvv 3450 [wsbc 3756 ⦋csb 3865 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: csb0 4376 sbcel12 4377 sbcne12 4381 sbcel2 4384 csbidm 4399 csbun 4407 csbin 4408 csbdif 4490 csbif 4549 csbuni 4903 sbcbr123 5164 sbcbr 5165 csbexg 5268 csbopab 5518 csbxp 5741 csbres 5956 csbima12 6053 csbrn 6179 csbiota 6507 csbfv12 6909 csbfv 6911 csbriota 7362 csbov123 7434 csbov 7435 |
| Copyright terms: Public domain | W3C validator |