| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
| Ref | Expression |
|---|---|
| csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3754 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | falim 1557 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
| 3 | 1, 2 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
| 4 | 3 | abbidv 2795 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
| 5 | df-csb 3854 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | fal 1554 | . . . 4 ⊢ ¬ ⊥ | |
| 7 | 6 | abf 4359 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
| 8 | 7 | eqcomi 2738 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
| 9 | 4, 5, 8 | 3eqtr4g 2789 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ⊥wfal 1552 ∈ wcel 2109 {cab 2707 Vcvv 3438 [wsbc 3744 ⦋csb 3853 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: csb0 4363 sbcel12 4364 sbcne12 4368 sbcel2 4371 csbidm 4386 csbun 4394 csbin 4395 csbdif 4477 csbif 4536 csbuni 4890 sbcbr123 5149 sbcbr 5150 csbexg 5252 csbopab 5502 csbxp 5723 csbres 5937 csbima12 6034 csbrn 6156 csbiota 6479 csbfv12 6872 csbfv 6874 csbriota 7325 csbov123 7397 csbov 7398 |
| Copyright terms: Public domain | W3C validator |