| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbprc | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.) |
| Ref | Expression |
|---|---|
| csbprc | ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3748 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → 𝐴 ∈ V) | |
| 2 | falim 1558 | . . . 4 ⊢ (⊥ → 𝐴 ∈ V) | |
| 3 | 1, 2 | pm5.21ni 377 | . . 3 ⊢ (¬ 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ ⊥)) |
| 4 | 3 | abbidv 2799 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ ⊥}) |
| 5 | df-csb 3848 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | fal 1555 | . . . 4 ⊢ ¬ ⊥ | |
| 7 | 6 | abf 4357 | . . 3 ⊢ {𝑦 ∣ ⊥} = ∅ |
| 8 | 7 | eqcomi 2742 | . 2 ⊢ ∅ = {𝑦 ∣ ⊥} |
| 9 | 4, 5, 8 | 3eqtr4g 2793 | 1 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ⊥wfal 1553 ∈ wcel 2113 {cab 2711 Vcvv 3438 [wsbc 3738 ⦋csb 3847 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-nul 4285 |
| This theorem is referenced by: csb0 4361 sbcel12 4362 sbcne12 4366 sbcel2 4369 csbidm 4384 csbun 4392 csbin 4393 csbdif 4475 csbif 4534 csbuni 4890 sbcbr123 5149 sbcbr 5150 csbexg 5252 csbopab 5500 csbxp 5722 csbres 5938 csbima12 6035 csbrn 6158 csbiota 6482 csbfv12 6876 csbfv 6878 csbriota 7327 csbov123 7399 csbov 7400 |
| Copyright terms: Public domain | W3C validator |