MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprc Structured version   Visualization version   GIF version

Theorem csbprc 4407
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3788 . . . 4 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
2 falim 1559 . . . 4 (⊥ → 𝐴 ∈ V)
31, 2pm5.21ni 379 . . 3 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
43abbidv 2802 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
5 df-csb 3895 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 fal 1556 . . . 4 ¬ ⊥
76abf 4403 . . 3 {𝑦 ∣ ⊥} = ∅
87eqcomi 2742 . 2 ∅ = {𝑦 ∣ ⊥}
94, 5, 83eqtr4g 2798 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wfal 1554  wcel 2107  {cab 2710  Vcvv 3475  [wsbc 3778  csb 3894  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-nul 4324
This theorem is referenced by:  csb0  4408  sbcel12  4409  sbcne12  4413  sbcel2  4416  csbidm  4431  csbun  4439  csbin  4440  csbdif  4528  csbif  4586  csbuni  4941  sbcbr123  5203  sbcbr  5204  csbexg  5311  csbopab  5556  csbxp  5776  csbres  5985  csbima12  6079  csbrn  6203  csbiota  6537  csbfv12  6940  csbfv  6942  csbriota  7381  csbov123  7451  csbov  7452
  Copyright terms: Public domain W3C validator