MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprc Structured version   Visualization version   GIF version

Theorem csbprc 4432
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3814 . . . 4 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
2 falim 1554 . . . 4 (⊥ → 𝐴 ∈ V)
31, 2pm5.21ni 377 . . 3 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
43abbidv 2811 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
5 df-csb 3922 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 fal 1551 . . . 4 ¬ ⊥
76abf 4429 . . 3 {𝑦 ∣ ⊥} = ∅
87eqcomi 2749 . 2 ∅ = {𝑦 ∣ ⊥}
94, 5, 83eqtr4g 2805 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wfal 1549  wcel 2108  {cab 2717  Vcvv 3488  [wsbc 3804  csb 3921  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-nul 4353
This theorem is referenced by:  csb0  4433  sbcel12  4434  sbcne12  4438  sbcel2  4441  csbidm  4456  csbun  4464  csbin  4465  csbdif  4547  csbif  4605  csbuni  4960  sbcbr123  5220  sbcbr  5221  csbexg  5328  csbopab  5574  csbxp  5799  csbres  6012  csbima12  6108  csbrn  6234  csbiota  6566  csbfv12  6968  csbfv  6970  csbriota  7420  csbov123  7492  csbov  7493
  Copyright terms: Public domain W3C validator