| Metamath
Proof Explorer Theorem List (p. 45 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | csbvargi 4401 | The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4400. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 | ||
| Theorem | sbccsb 4402* | Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | ||
| Theorem | sbccsb2 4403 | Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) | ||
| Theorem | rspcsbela 4404* | Special case related to rspsbc 3845. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) | ||
| Theorem | sbnfc2 4405* | Two ways of expressing "𝑥 is (effectively) not free in 𝐴". (Contributed by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | ||
| Theorem | csbab 4406* | Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} | ||
| Theorem | csbun 4407 | Distribution of class substitution over union of two classes. (Contributed by Drahflow, 23-Sep-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by NM, 13-Sep-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∪ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∪ ⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbin 4408 | Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∩ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbie2df 4409* | Conversion of implicit substitution to explicit class substitution. This version of csbiedf 3895 avoids a disjointness condition on 𝑥, 𝐴 and 𝑥, 𝐷 by substituting twice. Deduction form of csbie2 3904. (Contributed by AV, 29-Mar-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐶) & ⊢ (𝜑 → Ⅎ𝑥𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) | ||
| Theorem | 2nreu 4410* | If there are two different sets fulfilling a wff (by implicit substitution), then there is no unique set fulfilling the wff. (Contributed by AV, 20-Jun-2023.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵) → ((𝜓 ∧ 𝜒) → ¬ ∃!𝑥 ∈ 𝑋 𝜑)) | ||
| Theorem | un00 4411 | Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
| ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) | ||
| Theorem | vss 4412 | Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) | ||
| Theorem | 0pss 4413 | The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
| ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) | ||
| Theorem | npss0 4414 | No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ¬ 𝐴 ⊊ ∅ | ||
| Theorem | pssv 4415 | Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.) |
| ⊢ (𝐴 ⊊ V ↔ ¬ 𝐴 = V) | ||
| Theorem | disj 4416* | Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
| Theorem | disjr 4417* | Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) | ||
| Theorem | disj1 4418* | Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | ||
| Theorem | reldisj 4419 | Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | ||
| Theorem | disj3 4420 | Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | ||
| Theorem | disjne 4421 | Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) | ||
| Theorem | disjeq0 4422 | Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | ||
| Theorem | disjel 4423 | A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) | ||
| Theorem | disj2 4424 | Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) | ||
| Theorem | disj4 4425 | Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) | ||
| Theorem | ssdisj 4426 | Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | disjpss 4427 | A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) | ||
| Theorem | undisj1 4428 | The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) | ||
| Theorem | undisj2 4429 | The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) | ||
| Theorem | ssindif0 4430 | Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) | ||
| Theorem | inelcm 4431 | The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | ||
| Theorem | minel 4432 | A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | undif4 4433 | Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐶) = ∅ → (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶)) | ||
| Theorem | disjssun 4434 | Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) | ||
| Theorem | vdif0 4435 | Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | ||
| Theorem | difrab0eq 4436* | If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | ||
| Theorem | pssnel 4437* | A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | ||
| Theorem | disjdif 4438 | A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | ||
| Theorem | disjdifr 4439 | A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ | ||
| Theorem | difin0 4440 | The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ | ||
| Theorem | unvdif 4441 | The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V | ||
| Theorem | undif1 4442 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4438). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | ||
| Theorem | undif2 4443 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4438). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | ||
| Theorem | undifabs 4444 | Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
| ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | inundif 4445 | The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | disjdif2 4446 | The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) | ||
| Theorem | difun2 4447 | Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
| Theorem | undif 4448 | Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | ||
| Theorem | undifr 4449 | Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undifrOLD 4450 | Obsolete version of undifr 4449 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undif5 4451 | An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∪ 𝐵) ∖ 𝐵) = 𝐴) | ||
| Theorem | ssdifin0 4452 | A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | ssdifeq0 4453 | A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | ||
| Theorem | ssundif 4454 | A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
| ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
| Theorem | difcom 4455 | Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
| ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | pssdifcom1 4456 | Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) | ||
| Theorem | pssdifcom2 4457 | Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) | ||
| Theorem | difdifdir 4458 | Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ (𝐵 ∖ 𝐶)) | ||
| Theorem | uneqdifeq 4459 | Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) | ||
| Theorem | raldifeq 4460* | Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | r19.2z 4461* | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | r19.2zb 4462* | A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4461. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
| ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.3rz 4463* | Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28z 4464* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.3rzv 4465* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.9rzv 4466* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28zv 4467* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.37zv 4468* | Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.45zv 4469* | Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.44zv 4470* | Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) | ||
| Theorem | r19.27z 4471* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.27zv 4472* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.36zv 4473* | Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) | ||
| Theorem | ralidmw 4474* | Idempotent law for restricted quantifier. Weak version of ralidm 4478, which does not require ax-10 2142, ax-12 2178, but requires ax-8 2111. (Contributed by GG, 30-Sep-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzal 4475* | Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzalALT 4476* | Alternate proof of rzal 4475. Shorter, but requiring df-clel 2804, ax-8 2111. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexn0 4477* | Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | ralidm 4478 | Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) Reduce axiom usage. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | ral0 4479 | Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| ⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
| Theorem | ralf0 4480* | The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
| Theorem | ralnralall 4481* | A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
| ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑) → 𝜓)) | ||
| Theorem | falseral0 4482* | A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.) |
| ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) | ||
| Theorem | raaan 4483* | Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | raaanv 4484* | Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | sbss 4485* | Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) | ||
| Theorem | sbcssg 4486 | Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | raaan2 4487* | Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4483. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓))) | ||
| Theorem | 2reu4lem 4488* | Lemma for 2reu4 4489. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) | ||
| Theorem | 2reu4 4489* | Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2649. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | ||
| Theorem | csbdif 4490 | Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) | ||
This subsection introduces the conditional operator for classes, denoted by if(𝜑, 𝐴, 𝐵) (see df-if 4492). It is the analogue for classes of the conditional operator for propositions, denoted by if-(𝜑, 𝜓, 𝜒) (see df-ifp 1063). | ||
| Syntax | cif 4491 | Extend class notation to include the conditional operator for classes. |
| class if(𝜑, 𝐴, 𝐵) | ||
| Definition | df-if 4492* |
Definition of the conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4497 and iffalse 4500 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4550. (Contributed by NM, 15-May-1999.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | ||
| Theorem | dfif2 4493* | An alternate definition of the conditional operator df-if 4492 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} | ||
| Theorem | dfif6 4494* | An alternate definition of the conditional operator df-if 4492 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | ||
| Theorem | ifeq1 4495 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | ||
| Theorem | ifeq2 4496 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) | ||
| Theorem | iftrue 4497 | Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | ||
| Theorem | iftruei 4498 | Inference associated with iftrue 4497. (Contributed by BJ, 7-Oct-2018.) |
| ⊢ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 | ||
| Theorem | iftrued 4499 | Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴) | ||
| Theorem | iffalse 4500 | Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |