| Metamath
Proof Explorer Theorem List (p. 45 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sbcnestgf 4401 | Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker sbcnestgfw 4396 when possible. (Contributed by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | ||
| Theorem | csbnestgf 4402 | Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker csbnestgfw 4397 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | ||
| Theorem | sbcnestg 4403* | Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker sbcnestgw 4398 when possible. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | ||
| Theorem | csbnestg 4404* | Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker csbnestgw 4399 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | ||
| Theorem | sbcco3g 4405* | Composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker sbcco3gw 4400 when possible. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) | ||
| Theorem | csbco3g 4406* | Composition of two class substitutions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) | ||
| Theorem | csbnest1g 4407 | Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) | ||
| Theorem | csbidm 4408* | Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | csbvarg 4409 | The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | ||
| Theorem | csbvargi 4410 | The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4409. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 | ||
| Theorem | sbccsb 4411* | Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | ||
| Theorem | sbccsb2 4412 | Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) | ||
| Theorem | rspcsbela 4413* | Special case related to rspsbc 3854. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) | ||
| Theorem | sbnfc2 4414* | Two ways of expressing "𝑥 is (effectively) not free in 𝐴". (Contributed by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | ||
| Theorem | csbab 4415* | Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} | ||
| Theorem | csbun 4416 | Distribution of class substitution over union of two classes. (Contributed by Drahflow, 23-Sep-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by NM, 13-Sep-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∪ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∪ ⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbin 4417 | Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∩ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbie2df 4418* | Conversion of implicit substitution to explicit class substitution. This version of csbiedf 3904 avoids a disjointness condition on 𝑥, 𝐴 and 𝑥, 𝐷 by substituting twice. Deduction form of csbie2 3913. (Contributed by AV, 29-Mar-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐶) & ⊢ (𝜑 → Ⅎ𝑥𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) | ||
| Theorem | 2nreu 4419* | If there are two different sets fulfilling a wff (by implicit substitution), then there is no unique set fulfilling the wff. (Contributed by AV, 20-Jun-2023.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵) → ((𝜓 ∧ 𝜒) → ¬ ∃!𝑥 ∈ 𝑋 𝜑)) | ||
| Theorem | un00 4420 | Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
| ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) | ||
| Theorem | vss 4421 | Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) | ||
| Theorem | 0pss 4422 | The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
| ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) | ||
| Theorem | npss0 4423 | No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ¬ 𝐴 ⊊ ∅ | ||
| Theorem | pssv 4424 | Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.) |
| ⊢ (𝐴 ⊊ V ↔ ¬ 𝐴 = V) | ||
| Theorem | disj 4425* | Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by GG, 28-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
| Theorem | disjr 4426* | Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) | ||
| Theorem | disj1 4427* | Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | ||
| Theorem | reldisj 4428 | Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2177. (Revised by GG, 28-Jun-2024.) |
| ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | ||
| Theorem | disj3 4429 | Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | ||
| Theorem | disjne 4430 | Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) | ||
| Theorem | disjeq0 4431 | Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | ||
| Theorem | disjel 4432 | A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) | ||
| Theorem | disj2 4433 | Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) | ||
| Theorem | disj4 4434 | Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) | ||
| Theorem | ssdisj 4435 | Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | disjpss 4436 | A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) | ||
| Theorem | undisj1 4437 | The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) | ||
| Theorem | undisj2 4438 | The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) | ||
| Theorem | ssindif0 4439 | Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) | ||
| Theorem | inelcm 4440 | The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | ||
| Theorem | minel 4441 | A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | undif4 4442 | Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐶) = ∅ → (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶)) | ||
| Theorem | disjssun 4443 | Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) | ||
| Theorem | vdif0 4444 | Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | ||
| Theorem | difrab0eq 4445* | If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | ||
| Theorem | pssnel 4446* | A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | ||
| Theorem | disjdif 4447 | A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | ||
| Theorem | disjdifr 4448 | A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ | ||
| Theorem | difin0 4449 | The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ | ||
| Theorem | unvdif 4450 | The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V | ||
| Theorem | undif1 4451 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4447). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | ||
| Theorem | undif2 4452 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4447). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | ||
| Theorem | undifabs 4453 | Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
| ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | inundif 4454 | The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | disjdif2 4455 | The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) | ||
| Theorem | difun2 4456 | Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
| Theorem | undif 4457 | Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | ||
| Theorem | undifr 4458 | Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undifrOLD 4459 | Obsolete version of undifr 4458 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undif5 4460 | An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∪ 𝐵) ∖ 𝐵) = 𝐴) | ||
| Theorem | ssdifin0 4461 | A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | ssdifeq0 4462 | A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | ||
| Theorem | ssundif 4463 | A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
| ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
| Theorem | difcom 4464 | Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
| ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | pssdifcom1 4465 | Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) | ||
| Theorem | pssdifcom2 4466 | Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) | ||
| Theorem | difdifdir 4467 | Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ (𝐵 ∖ 𝐶)) | ||
| Theorem | uneqdifeq 4468 | Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) | ||
| Theorem | raldifeq 4469* | Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | r19.2z 4470* | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | r19.2zb 4471* | A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4470. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
| ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.3rz 4472* | Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28z 4473* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.3rzv 4474* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.9rzv 4475* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28zv 4476* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.37zv 4477* | Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.45zv 4478* | Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.44zv 4479* | Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) | ||
| Theorem | r19.27z 4480* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.27zv 4481* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.36zv 4482* | Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) | ||
| Theorem | ralidmw 4483* | Idempotent law for restricted quantifier. Weak version of ralidm 4487, which does not require ax-10 2141, ax-12 2177, but requires ax-8 2110. (Contributed by GG, 30-Sep-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzal 4484* | Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzalALT 4485* | Alternate proof of rzal 4484. Shorter, but requiring df-clel 2809, ax-8 2110. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexn0 4486* | Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | ralidm 4487 | Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) Reduce axiom usage. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | ral0 4488 | Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
| ⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
| Theorem | ralf0 4489* | The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
| Theorem | ralnralall 4490* | A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
| ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑) → 𝜓)) | ||
| Theorem | falseral0 4491* | A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.) |
| ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) | ||
| Theorem | raaan 4492* | Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | raaanv 4493* | Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | sbss 4494* | Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) | ||
| Theorem | sbcssg 4495 | Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | raaan2 4496* | Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4492. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓))) | ||
| Theorem | 2reu4lem 4497* | Lemma for 2reu4 4498. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) | ||
| Theorem | 2reu4 4498* | Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2654. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | ||
| Theorem | csbdif 4499 | Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) | ||
This subsection introduces the conditional operator for classes, denoted by if(𝜑, 𝐴, 𝐵) (see df-if 4501). It is the analogue for classes of the conditional operator for propositions, denoted by if-(𝜑, 𝜓, 𝜒) (see df-ifp 1063). | ||
| Syntax | cif 4500 | Extend class notation to include the conditional operator for classes. |
| class if(𝜑, 𝐴, 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |