| Metamath
Proof Explorer Theorem List (p. 45 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | reldisj 4401 | Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2179. (Revised by GG, 28-Jun-2024.) |
| ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | ||
| Theorem | disj3 4402 | Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | ||
| Theorem | disjne 4403 | Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) | ||
| Theorem | disjeq0 4404 | Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | ||
| Theorem | disjel 4405 | A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) | ||
| Theorem | disj2 4406 | Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) | ||
| Theorem | disj4 4407 | Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) | ||
| Theorem | ssdisj 4408 | Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | disjpss 4409 | A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) | ||
| Theorem | undisj1 4410 | The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) | ||
| Theorem | undisj2 4411 | The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) | ||
| Theorem | ssindif0 4412 | Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) | ||
| Theorem | inelcm 4413 | The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | ||
| Theorem | minel 4414 | A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | undif4 4415 | Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐶) = ∅ → (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶)) | ||
| Theorem | disjssun 4416 | Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) | ||
| Theorem | vdif0 4417 | Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | ||
| Theorem | difrab0eq 4418* | If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | ||
| Theorem | pssnel 4419* | A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | ||
| Theorem | disjdif 4420 | A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | ||
| Theorem | disjdifr 4421 | A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ | ||
| Theorem | difin0 4422 | The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ | ||
| Theorem | unvdif 4423 | The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V | ||
| Theorem | undif1 4424 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4420). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | ||
| Theorem | undif2 4425 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4420). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | ||
| Theorem | undifabs 4426 | Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
| ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | inundif 4427 | The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | disjdif2 4428 | The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) | ||
| Theorem | difun2 4429 | Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
| Theorem | undif 4430 | Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | ||
| Theorem | undifr 4431 | Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undifrOLD 4432 | Obsolete version of undifr 4431 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undif5 4433 | An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∪ 𝐵) ∖ 𝐵) = 𝐴) | ||
| Theorem | ssdifin0 4434 | A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | ssdifeq0 4435 | A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | ||
| Theorem | ssundif 4436 | A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
| ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
| Theorem | difcom 4437 | Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
| ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | pssdifcom1 4438 | Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) | ||
| Theorem | pssdifcom2 4439 | Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) | ||
| Theorem | difdifdir 4440 | Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ (𝐵 ∖ 𝐶)) | ||
| Theorem | uneqdifeq 4441 | Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) | ||
| Theorem | raldifeq 4442* | Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | r19.2z 4443* | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1977). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | r19.2zb 4444* | A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4443. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
| ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.3rz 4445* | Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28z 4446* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.3rzv 4447* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.9rzv 4448* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28zv 4449* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.37zv 4450* | Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.45zv 4451* | Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.44zv 4452* | Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) | ||
| Theorem | r19.27z 4453* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.27zv 4454* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.36zv 4455* | Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) | ||
| Theorem | ralidmw 4456* | Idempotent law for restricted quantifier. Weak version of ralidm 4460, which does not require ax-10 2143, ax-12 2179, but requires ax-8 2112. (Contributed by GG, 30-Sep-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzal 4457* | Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2804, ax-8 2112. (Revised by GG, 2-Sep-2024.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzalALT 4458* | Alternate proof of rzal 4457. Shorter, but requiring df-clel 2804, ax-8 2112. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexn0 4459* | Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2804, ax-8 2112. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | ralidm 4460 | Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) Reduce axiom usage. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | ral0 4461 | Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2804, ax-8 2112. (Revised by GG, 2-Sep-2024.) |
| ⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
| Theorem | ralf0 4462* | The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) Avoid df-clel 2804, ax-8 2112. (Revised by GG, 2-Sep-2024.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
| Theorem | ralnralall 4463* | A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
| ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑) → 𝜓)) | ||
| Theorem | falseral0 4464* | A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.) |
| ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) | ||
| Theorem | raaan 4465* | Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | raaanv 4466* | Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | sbss 4467* | Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) | ||
| Theorem | sbcssg 4468 | Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | raaan2 4469* | Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4465. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓))) | ||
| Theorem | 2reu4lem 4470* | Lemma for 2reu4 4471. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) | ||
| Theorem | 2reu4 4471* | Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2649. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | ||
| Theorem | csbdif 4472 | Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) | ||
This subsection introduces the conditional operator for classes, denoted by if(𝜑, 𝐴, 𝐵) (see df-if 4474). It is the analogue for classes of the conditional operator for propositions, denoted by if-(𝜑, 𝜓, 𝜒) (see df-ifp 1063). | ||
| Syntax | cif 4473 | Extend class notation to include the conditional operator for classes. |
| class if(𝜑, 𝐴, 𝐵) | ||
| Definition | df-if 4474* |
Definition of the conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4479 and iffalse 4482 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4532. (Contributed by NM, 15-May-1999.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | ||
| Theorem | dfif2 4475* | An alternate definition of the conditional operator df-if 4474 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} | ||
| Theorem | dfif6 4476* | An alternate definition of the conditional operator df-if 4474 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | ||
| Theorem | ifeq1 4477 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | ||
| Theorem | ifeq2 4478 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) | ||
| Theorem | iftrue 4479 | Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | ||
| Theorem | iftruei 4480 | Inference associated with iftrue 4479. (Contributed by BJ, 7-Oct-2018.) |
| ⊢ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 | ||
| Theorem | iftrued 4481 | Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴) | ||
| Theorem | iffalse 4482 | Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | ||
| Theorem | iffalsei 4483 | Inference associated with iffalse 4482. (Contributed by BJ, 7-Oct-2018.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 | ||
| Theorem | iffalsed 4484 | Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) | ||
| Theorem | ifnefalse 4485 | When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4482 directly in this case. It happens, e.g., in oevn0 8425. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | ||
| Theorem | iftrueb 4486 | When the branches are not equal, an "if" condition results in the first branch if and only if its condition is true. (Contributed by SN, 16-Oct-2025.) |
| ⊢ (𝐴 ≠ 𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴 ↔ 𝜑)) | ||
| Theorem | ifsb 4487 | Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013.) |
| ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) & ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ 𝐶 = if(𝜑, 𝐷, 𝐸) | ||
| Theorem | dfif3 4488* | Alternate definition of the conditional operator df-if 4474. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | ||
| Theorem | dfif4 4489* | Alternate definition of the conditional operator df-if 4474. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) |
| ⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵 ∪ 𝐶))) | ||
| Theorem | dfif5 4490* | Alternate definition of the conditional operator df-if 4474. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false (see also ab0orv 4331). (Contributed by Gérard Lang, 18-Aug-2013.) |
| ⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | ||
| Theorem | ifssun 4491 | A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
| ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) | ||
| Theorem | ifeq12 4492 | Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) | ||
| Theorem | ifeq1d 4493 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | ||
| Theorem | ifeq2d 4494 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | ||
| Theorem | ifeq12d 4495 | Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) | ||
| Theorem | ifbi 4496 | Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) | ||
| Theorem | ifbid 4497 | Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | ||
| Theorem | ifbieq1d 4498 | Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) | ||
| Theorem | ifbieq2i 4499 | Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ 𝐴 = 𝐵 ⇒ ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) | ||
| Theorem | ifbieq2d 4500 | Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |