| Metamath
Proof Explorer Theorem List (p. 45 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | disj 4401* | Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by GG, 28-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
| Theorem | disjr 4402* | Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) | ||
| Theorem | disj1 4403* | Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | ||
| Theorem | reldisj 4404 | Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2182. (Revised by GG, 28-Jun-2024.) |
| ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) | ||
| Theorem | disj3 4405 | Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | ||
| Theorem | disjne 4406 | Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) | ||
| Theorem | disjeq0 4407 | Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | ||
| Theorem | disjel 4408 | A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) | ||
| Theorem | disj2 4409 | Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) | ||
| Theorem | disj4 4410 | Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) | ||
| Theorem | ssdisj 4411 | Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | disjpss 4412 | A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) | ||
| Theorem | undisj1 4413 | The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) | ||
| Theorem | undisj2 4414 | The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) | ||
| Theorem | ssindif0 4415 | Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) | ||
| Theorem | inelcm 4416 | The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | ||
| Theorem | minel 4417 | A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | undif4 4418 | Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐶) = ∅ → (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶)) | ||
| Theorem | disjssun 4419 | Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) | ||
| Theorem | vdif0 4420 | Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | ||
| Theorem | difrab0eq 4421* | If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
| ⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | ||
| Theorem | pssnel 4422* | A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
| ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | ||
| Theorem | disjdif 4423 | A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | ||
| Theorem | disjdifr 4424 | A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
| ⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ | ||
| Theorem | difin0 4425 | The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ | ||
| Theorem | unvdif 4426 | The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∪ (V ∖ 𝐴)) = V | ||
| Theorem | undif1 4427 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4423). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | ||
| Theorem | undif2 4428 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4423). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | ||
| Theorem | undifabs 4429 | Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
| ⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | inundif 4430 | The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
| Theorem | disjdif2 4431 | The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) | ||
| Theorem | difun2 4432 | Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
| Theorem | undif 4433 | Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | ||
| Theorem | undifr 4434 | Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undifrOLD 4435 | Obsolete version of undifr 4434 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) | ||
| Theorem | undif5 4436 | An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∪ 𝐵) ∖ 𝐵) = 𝐴) | ||
| Theorem | ssdifin0 4437 | A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) | ||
| Theorem | ssdifeq0 4438 | A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
| ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | ||
| Theorem | ssundif 4439 | A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
| ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
| Theorem | difcom 4440 | Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
| ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
| Theorem | pssdifcom1 4441 | Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) | ||
| Theorem | pssdifcom2 4442 | Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) | ||
| Theorem | difdifdir 4443 | Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ (𝐵 ∖ 𝐶)) | ||
| Theorem | uneqdifeq 4444 | Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) | ||
| Theorem | raldifeq 4445* | Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | r19.2z 4446* | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1977). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | r19.2zb 4447* | A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4446. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
| ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.3rz 4448* | Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28z 4449* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.3rzv 4450* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.9rzv 4451* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | r19.28zv 4452* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.37zv 4453* | Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.45zv 4454* | Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) | ||
| Theorem | r19.44zv 4455* | Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) | ||
| Theorem | r19.27z 4456* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.27zv 4457* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
| Theorem | r19.36zv 4458* | Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
| ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) | ||
| Theorem | ralidmw 4459* | Idempotent law for restricted quantifier. Weak version of ralidm 4463, which does not require ax-10 2146, ax-12 2182, but requires ax-8 2115. (Contributed by GG, 30-Sep-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzal 4460* | Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2808, ax-8 2115. (Revised by GG, 2-Sep-2024.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rzalALT 4461* | Alternate proof of rzal 4460. Shorter, but requiring df-clel 2808, ax-8 2115. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexn0 4462* | Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2808, ax-8 2115. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | ralidm 4463 | Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) Reduce axiom usage. (Revised by GG, 2-Sep-2024.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | ral0 4464 | Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2808, ax-8 2115. (Revised by GG, 2-Sep-2024.) |
| ⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
| Theorem | ralf0 4465* | The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) Avoid df-clel 2808, ax-8 2115. (Revised by GG, 2-Sep-2024.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
| Theorem | ralnralall 4466* | A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
| ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑) → 𝜓)) | ||
| Theorem | falseral0 4467* | A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.) |
| ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) | ||
| Theorem | raaan 4468* | Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | raaanv 4469* | Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | sbss 4470* | Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) | ||
| Theorem | sbcssg 4471 | Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | raaan2 4472* | Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4468. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓))) | ||
| Theorem | 2reu4lem 4473* | Lemma for 2reu4 4474. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) | ||
| Theorem | 2reu4 4474* | Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2652. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | ||
| Theorem | csbdif 4475 | Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) | ||
This subsection introduces the conditional operator for classes, denoted by if(𝜑, 𝐴, 𝐵) (see df-if 4477). It is the analogue for classes of the conditional operator for propositions, denoted by if-(𝜑, 𝜓, 𝜒) (see df-ifp 1063). | ||
| Syntax | cif 4476 | Extend class notation to include the conditional operator for classes. |
| class if(𝜑, 𝐴, 𝐵) | ||
| Definition | df-if 4477* |
Definition of the conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4482 and iffalse 4485 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4535. (Contributed by NM, 15-May-1999.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | ||
| Theorem | dfif2 4478* | An alternate definition of the conditional operator df-if 4477 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} | ||
| Theorem | dfif6 4479* | An alternate definition of the conditional operator df-if 4477 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | ||
| Theorem | ifeq1 4480 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | ||
| Theorem | ifeq2 4481 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) | ||
| Theorem | iftrue 4482 | Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | ||
| Theorem | iftruei 4483 | Inference associated with iftrue 4482. (Contributed by BJ, 7-Oct-2018.) |
| ⊢ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 | ||
| Theorem | iftrued 4484 | Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴) | ||
| Theorem | iffalse 4485 | Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | ||
| Theorem | iffalsei 4486 | Inference associated with iffalse 4485. (Contributed by BJ, 7-Oct-2018.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 | ||
| Theorem | iffalsed 4487 | Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) | ||
| Theorem | ifnefalse 4488 | When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4485 directly in this case. It happens, e.g., in oevn0 8439. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | ||
| Theorem | iftrueb 4489 | When the branches are not equal, an "if" condition results in the first branch if and only if its condition is true. (Contributed by SN, 16-Oct-2025.) |
| ⊢ (𝐴 ≠ 𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐴 ↔ 𝜑)) | ||
| Theorem | ifsb 4490 | Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013.) |
| ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) & ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ 𝐶 = if(𝜑, 𝐷, 𝐸) | ||
| Theorem | dfif3 4491* | Alternate definition of the conditional operator df-if 4477. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | ||
| Theorem | dfif4 4492* | Alternate definition of the conditional operator df-if 4477. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) |
| ⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵 ∪ 𝐶))) | ||
| Theorem | dfif5 4493* | Alternate definition of the conditional operator df-if 4477. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false (see also ab0orv 4334). (Contributed by Gérard Lang, 18-Aug-2013.) |
| ⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | ||
| Theorem | ifssun 4494 | A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
| ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) | ||
| Theorem | ifeq12 4495 | Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) | ||
| Theorem | ifeq1d 4496 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | ||
| Theorem | ifeq2d 4497 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | ||
| Theorem | ifeq12d 4498 | Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) | ||
| Theorem | ifbi 4499 | Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) | ||
| Theorem | ifbid 4500 | Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |