Home | Metamath
Proof Explorer Theorem List (p. 45 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29259) |
Hilbert Space Explorer
(29260-30782) |
Users' Mathboxes
(30783-46465) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | undisj2 4401 | The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) | ||
Theorem | ssindif0 4402 | Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) | ||
Theorem | inelcm 4403 | The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | ||
Theorem | minel 4404 | A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | undif4 4405 | Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∩ 𝐶) = ∅ → (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ 𝐶)) | ||
Theorem | disjssun 4406 | Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) | ||
Theorem | vdif0 4407 | Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.) |
⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | ||
Theorem | difrab0eq 4408* | If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
⊢ ((𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅ ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | ||
Theorem | pssnel 4409* | A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.) |
⊢ (𝐴 ⊊ 𝐵 → ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | ||
Theorem | disjdif 4410 | A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.) |
⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | ||
Theorem | disjdifr 4411 | A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.) |
⊢ ((𝐵 ∖ 𝐴) ∩ 𝐴) = ∅ | ||
Theorem | difin0 4412 | The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ | ||
Theorem | unvdif 4413 | The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∪ (V ∖ 𝐴)) = V | ||
Theorem | undif1 4414 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4410). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | ||
Theorem | undif2 4415 | Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4410). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.) |
⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | ||
Theorem | undifabs 4416 | Absorption of difference by union. (Contributed by NM, 18-Aug-2013.) |
⊢ (𝐴 ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
Theorem | inundif 4417 | The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | ||
Theorem | disjdif2 4418 | The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) | ||
Theorem | difun2 4419 | Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
Theorem | undif 4420 | Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | ||
Theorem | ssdifin0 4421 | A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.) |
⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → (𝐴 ∩ 𝐶) = ∅) | ||
Theorem | ssdifeq0 4422 | A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | ||
Theorem | ssundif 4423 | A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
Theorem | difcom 4424 | Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
Theorem | pssdifcom1 4425 | Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐴) ⊊ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊊ 𝐴)) | ||
Theorem | pssdifcom2 4426 | Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊊ (𝐶 ∖ 𝐴) ↔ 𝐴 ⊊ (𝐶 ∖ 𝐵))) | ||
Theorem | difdifdir 4427 | Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.) |
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ (𝐵 ∖ 𝐶)) | ||
Theorem | uneqdifeq 4428 | Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 ∪ 𝐵) = 𝐶 ↔ (𝐶 ∖ 𝐴) = 𝐵)) | ||
Theorem | raldifeq 4429* | Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | r19.2z 4430* | Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1983). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | r19.2zb 4431* | A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4430. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.3rz 4432* | Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.28z 4433* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.3rzv 4434* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.) |
⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.9rzv 4435* | Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.28zv 4436* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.37zv 4437* | Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.) |
⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.45zv 4438* | Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | r19.44zv 4439* | Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) | ||
Theorem | r19.27z 4440* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
Theorem | r19.27zv 4441* | Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
Theorem | r19.36zv 4442* | Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.) |
⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓))) | ||
Theorem | ralidmw 4443* | Idempotent law for restricted quantifier. Weak version of ralidm 4447, which does not require ax-10 2140, ax-12 2174, but requires ax-8 2111. (Contributed by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rzal 4444* | Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2817, ax-8 2111. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rzalALT 4445* | Alternate proof of rzal 4444. Shorter, but requiring df-clel 2817, ax-8 2111. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexn0 4446* | Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2817, ax-8 2111. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
Theorem | ralidm 4447 | Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ral0 4448 | Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2817, ax-8 2111. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
Theorem | ralf0 4449* | The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) Avoid df-clel 2817, ax-8 2111. (Revised by Gino Giotto, 2-Sep-2024.) |
⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
Theorem | rexn0OLD 4450* | Obsolete version of rexn0 4446 as of 2-Sep-2024. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) | ||
Theorem | ralidmOLD 4451* | Obsolete version of ralidm 4447 as of 2-Sep-2024. (Contributed by NM, 28-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | ral0OLD 4452 | Obsolete version of ral0 4448 as of 2-Sep-2024. (Contributed by NM, 20-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∀𝑥 ∈ ∅ 𝜑 | ||
Theorem | ralf0OLD 4453* | Obsolete version of ralf0 4449 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) | ||
Theorem | ralnralall 4454* | A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜑) → 𝜓)) | ||
Theorem | falseral0 4455* | A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.) |
⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) | ||
Theorem | raaan 4456* | Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | raaanv 4457* | Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | sbss 4458* | Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
⊢ ([𝑦 / 𝑥]𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴) | ||
Theorem | sbcssg 4459 | Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | raaan2 4460* | Rearrange restricted quantifiers with two different restricting classes, analogous to raaan 4456. It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((𝐴 = ∅ ↔ 𝐵 = ∅) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓))) | ||
Theorem | 2reu4lem 4461* | Lemma for 2reu4 4462. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) | ||
Theorem | 2reu4 4462* | Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2657. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | ||
Theorem | csbdif 4463 | Distribution of class substitution over difference of two classes. (Contributed by ML, 14-Jul-2020.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∖ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∖ ⦋𝐴 / 𝑥⦌𝐶) | ||
This subsection introduces the conditional operator for classes, denoted by if(𝜑, 𝐴, 𝐵) (see df-if 4465). It is the analogue for classes of the conditional operator for propositions, denoted by if-(𝜑, 𝜓, 𝜒) (see df-ifp 1060). | ||
Syntax | cif 4464 | Extend class notation to include the conditional operator for classes. |
class if(𝜑, 𝐴, 𝐵) | ||
Definition | df-if 4465* |
Definition of the conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4470 and iffalse 4473 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4522. (Contributed by NM, 15-May-1999.) |
⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | ||
Theorem | dfif2 4466* | An alternate definition of the conditional operator df-if 4465 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} | ||
Theorem | dfif6 4467* | An alternate definition of the conditional operator df-if 4465 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | ||
Theorem | ifeq1 4468 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | ||
Theorem | ifeq2 4469 | Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) | ||
Theorem | iftrue 4470 | Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | ||
Theorem | iftruei 4471 | Inference associated with iftrue 4470. (Contributed by BJ, 7-Oct-2018.) |
⊢ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 | ||
Theorem | iftrued 4472 | Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴) | ||
Theorem | iffalse 4473 | Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | ||
Theorem | iffalsei 4474 | Inference associated with iffalse 4473. (Contributed by BJ, 7-Oct-2018.) |
⊢ ¬ 𝜑 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 | ||
Theorem | iffalsed 4475 | Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) | ||
Theorem | ifnefalse 4476 | When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 4473 directly in this case. It happens, e.g., in oevn0 8321. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | ||
Theorem | ifsb 4477 | Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013.) |
⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → 𝐶 = 𝐷) & ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ 𝐶 = if(𝜑, 𝐷, 𝐸) | ||
Theorem | dfif3 4478* | Alternate definition of the conditional operator df-if 4465. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | ||
Theorem | dfif4 4479* | Alternate definition of the conditional operator df-if 4465. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) |
⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵 ∪ 𝐶))) | ||
Theorem | dfif5 4480* | Alternate definition of the conditional operator df-if 4465. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false (see also ab0orv 4317). (Contributed by Gérard Lang, 18-Aug-2013.) |
⊢ 𝐶 = {𝑥 ∣ 𝜑} ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐵) ∪ (((𝐴 ∖ 𝐵) ∩ 𝐶) ∪ ((𝐵 ∖ 𝐴) ∩ (V ∖ 𝐶)))) | ||
Theorem | ifssun 4481 | A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) | ||
Theorem | ifeq12 4482 | Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) | ||
Theorem | ifeq1d 4483 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | ||
Theorem | ifeq2d 4484 | Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | ||
Theorem | ifeq12d 4485 | Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐷)) | ||
Theorem | ifbi 4486 | Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) | ||
Theorem | ifbid 4487 | Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | ||
Theorem | ifbieq1d 4488 | Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐶)) | ||
Theorem | ifbieq2i 4489 | Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ 𝐴 = 𝐵 ⇒ ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) | ||
Theorem | ifbieq2d 4490 | Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) | ||
Theorem | ifbieq12i 4491 | Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) | ||
Theorem | ifbieq12d 4492 | Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) | ||
Theorem | nfifd 4493 | Deduction form of nfif 4494. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) | ||
Theorem | nfif 4494 | Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) | ||
Theorem | ifeq1da 4495 | Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | ||
Theorem | ifeq2da 4496 | Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | ||
Theorem | ifeq12da 4497 | Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) | ||
Theorem | ifbieq12d2 4498 | Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017.) (Proof shortened by Wolf Lammen, 24-Jun-2021.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) | ||
Theorem | ifclda 4499 | Conditional closure. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) | ||
Theorem | ifeqda 4500 | Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = 𝐶) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |