HomeHome Metamath Proof Explorer
Theorem List (p. 45 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30166)
  Hilbert Space Explorer  Hilbert Space Explorer
(30167-31689)
  Users' Mathboxes  Users' Mathboxes
(31690-47842)
 

Theorem List for Metamath Proof Explorer - 4401-4500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem0dif 4401 The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
(βˆ… βˆ– 𝐴) = βˆ…
 
Theoremabf 4402 A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2108, ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 30-Jun-2024.)
Β¬ πœ‘    β‡’   {π‘₯ ∣ πœ‘} = βˆ…
 
TheoremabfOLD 4403 Obsolete version of abf 4402 as of 28-Jun-2024. (Contributed by NM, 20-Jan-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Β¬ πœ‘    β‡’   {π‘₯ ∣ πœ‘} = βˆ…
 
Theoremeq0rdv 4404* Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2108, df-clel 2810. (Revised by Gino Giotto, 6-Sep-2024.)
(πœ‘ β†’ Β¬ π‘₯ ∈ 𝐴)    β‡’   (πœ‘ β†’ 𝐴 = βˆ…)
 
Theoremeq0rdvALT 4405* Alternate proof of eq0rdv 4404. Shorter, but requiring df-clel 2810, ax-8 2108. (Contributed by NM, 11-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(πœ‘ β†’ Β¬ π‘₯ ∈ 𝐴)    β‡’   (πœ‘ β†’ 𝐴 = βˆ…)
 
Theoremcsbprc 4406 The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
(Β¬ 𝐴 ∈ V β†’ ⦋𝐴 / π‘₯⦌𝐡 = βˆ…)
 
Theoremcsb0 4407 The proper substitution of a class into the empty set is the empty set. (Contributed by NM, 18-Aug-2018.)
⦋𝐴 / π‘₯β¦Œβˆ… = βˆ…
 
Theoremsbcel12 4408 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / π‘₯]𝐡 ∈ 𝐢 ↔ ⦋𝐴 / π‘₯⦌𝐡 ∈ ⦋𝐴 / π‘₯⦌𝐢)
 
Theoremsbceqg 4409 Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯]𝐡 = 𝐢 ↔ ⦋𝐴 / π‘₯⦌𝐡 = ⦋𝐴 / π‘₯⦌𝐢))
 
Theoremsbceqi 4410 Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V    &   β¦‹π΄ / π‘₯⦌𝐡 = 𝐷    &   β¦‹π΄ / π‘₯⦌𝐢 = 𝐸    β‡’   ([𝐴 / π‘₯]𝐡 = 𝐢 ↔ 𝐷 = 𝐸)
 
Theoremsbcnel12g 4411 Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
(𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯]𝐡 βˆ‰ 𝐢 ↔ ⦋𝐴 / π‘₯⦌𝐡 βˆ‰ ⦋𝐴 / π‘₯⦌𝐢))
 
Theoremsbcne12 4412 Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.)
([𝐴 / π‘₯]𝐡 β‰  𝐢 ↔ ⦋𝐴 / π‘₯⦌𝐡 β‰  ⦋𝐴 / π‘₯⦌𝐢)
 
Theoremsbcel1g 4413* Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / π‘₯] is the wff 𝐡 ∈ 𝐢, whereas the scope of ⦋𝐴 / π‘₯⦌ is the class 𝐡. (Contributed by NM, 10-Nov-2005.)
(𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯]𝐡 ∈ 𝐢 ↔ ⦋𝐴 / π‘₯⦌𝐡 ∈ 𝐢))
 
Theoremsbceq1g 4414* Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯]𝐡 = 𝐢 ↔ ⦋𝐴 / π‘₯⦌𝐡 = 𝐢))
 
Theoremsbcel2 4415* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / π‘₯]𝐡 ∈ 𝐢 ↔ 𝐡 ∈ ⦋𝐴 / π‘₯⦌𝐢)
 
Theoremsbceq2g 4416* Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯]𝐡 = 𝐢 ↔ 𝐡 = ⦋𝐴 / π‘₯⦌𝐢))
 
Theoremcsbcom 4417* Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
⦋𝐴 / π‘₯β¦Œβ¦‹π΅ / π‘¦β¦ŒπΆ = ⦋𝐡 / π‘¦β¦Œβ¦‹π΄ / π‘₯⦌𝐢
 
Theoremsbcnestgfw 4418* Nest the composition of two substitutions. Version of sbcnestgf 4423 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 11-Nov-2016.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.)
((𝐴 ∈ 𝑉 ∧ βˆ€π‘¦β„²π‘₯πœ‘) β†’ ([𝐴 / π‘₯][𝐡 / 𝑦]πœ‘ ↔ [⦋𝐴 / π‘₯⦌𝐡 / 𝑦]πœ‘))
 
Theoremcsbnestgfw 4419* Nest the composition of two substitutions. Version of csbnestgf 4424 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.)
((𝐴 ∈ 𝑉 ∧ βˆ€π‘¦β„²π‘₯𝐢) β†’ ⦋𝐴 / π‘₯β¦Œβ¦‹π΅ / π‘¦β¦ŒπΆ = ⦋⦋𝐴 / π‘₯⦌𝐡 / π‘¦β¦ŒπΆ)
 
Theoremsbcnestgw 4420* Nest the composition of two substitutions. Version of sbcnestg 4425 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 27-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.)
(𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯][𝐡 / 𝑦]πœ‘ ↔ [⦋𝐴 / π‘₯⦌𝐡 / 𝑦]πœ‘))
 
Theoremcsbnestgw 4421* Nest the composition of two substitutions. Version of csbnestg 4426 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.)
(𝐴 ∈ 𝑉 β†’ ⦋𝐴 / π‘₯β¦Œβ¦‹π΅ / π‘¦β¦ŒπΆ = ⦋⦋𝐴 / π‘₯⦌𝐡 / π‘¦β¦ŒπΆ)
 
Theoremsbcco3gw 4422* Composition of two substitutions. Version of sbcco3g 4427 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 27-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.)
(π‘₯ = 𝐴 β†’ 𝐡 = 𝐢)    β‡’   (𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯][𝐡 / 𝑦]πœ‘ ↔ [𝐢 / 𝑦]πœ‘))
 
Theoremsbcnestgf 4423 Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker sbcnestgfw 4418 when possible. (Contributed by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
((𝐴 ∈ 𝑉 ∧ βˆ€π‘¦β„²π‘₯πœ‘) β†’ ([𝐴 / π‘₯][𝐡 / 𝑦]πœ‘ ↔ [⦋𝐴 / π‘₯⦌𝐡 / 𝑦]πœ‘))
 
Theoremcsbnestgf 4424 Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker csbnestgfw 4419 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.)
((𝐴 ∈ 𝑉 ∧ βˆ€π‘¦β„²π‘₯𝐢) β†’ ⦋𝐴 / π‘₯β¦Œβ¦‹π΅ / π‘¦β¦ŒπΆ = ⦋⦋𝐴 / π‘₯⦌𝐡 / π‘¦β¦ŒπΆ)
 
Theoremsbcnestg 4425* Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker sbcnestgw 4420 when possible. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
(𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯][𝐡 / 𝑦]πœ‘ ↔ [⦋𝐴 / π‘₯⦌𝐡 / 𝑦]πœ‘))
 
Theoremcsbnestg 4426* Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker csbnestgw 4421 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.)
(𝐴 ∈ 𝑉 β†’ ⦋𝐴 / π‘₯β¦Œβ¦‹π΅ / π‘¦β¦ŒπΆ = ⦋⦋𝐴 / π‘₯⦌𝐡 / π‘¦β¦ŒπΆ)
 
Theoremsbcco3g 4427* Composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker sbcco3gw 4422 when possible. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
(π‘₯ = 𝐴 β†’ 𝐡 = 𝐢)    β‡’   (𝐴 ∈ 𝑉 β†’ ([𝐴 / π‘₯][𝐡 / 𝑦]πœ‘ ↔ [𝐢 / 𝑦]πœ‘))
 
Theoremcsbco3g 4428* Composition of two class substitutions. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
(π‘₯ = 𝐴 β†’ 𝐡 = 𝐢)    β‡’   (𝐴 ∈ 𝑉 β†’ ⦋𝐴 / π‘₯β¦Œβ¦‹π΅ / π‘¦β¦Œπ· = ⦋𝐢 / π‘¦β¦Œπ·)
 
Theoremcsbnest1g 4429 Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴 ∈ 𝑉 β†’ ⦋𝐴 / π‘₯β¦Œβ¦‹π΅ / π‘₯⦌𝐢 = ⦋⦋𝐴 / π‘₯⦌𝐡 / π‘₯⦌𝐢)
 
Theoremcsbidm 4430* Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) (Revised by NM, 18-Aug-2018.)
⦋𝐴 / π‘₯β¦Œβ¦‹π΄ / π‘₯⦌𝐡 = ⦋𝐴 / π‘₯⦌𝐡
 
Theoremcsbvarg 4431 The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
(𝐴 ∈ 𝑉 β†’ ⦋𝐴 / π‘₯⦌π‘₯ = 𝐴)
 
Theoremcsbvargi 4432 The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4431. (Contributed by Giovanni Mascellani, 30-May-2019.)
𝐴 ∈ V    β‡’   β¦‹π΄ / π‘₯⦌π‘₯ = 𝐴
 
Theoremsbccsb 4433* Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.)
([𝐴 / π‘₯]πœ‘ ↔ 𝑦 ∈ ⦋𝐴 / π‘₯⦌{𝑦 ∣ πœ‘})
 
Theoremsbccsb2 4434 Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / π‘₯]πœ‘ ↔ 𝐴 ∈ ⦋𝐴 / π‘₯⦌{π‘₯ ∣ πœ‘})
 
Theoremrspcsbela 4435* Special case related to rspsbc 3873. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
((𝐴 ∈ 𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 𝐢 ∈ 𝐷) β†’ ⦋𝐴 / π‘₯⦌𝐢 ∈ 𝐷)
 
Theoremsbnfc2 4436* Two ways of expressing "π‘₯ is (effectively) not free in 𝐴". (Contributed by Mario Carneiro, 14-Oct-2016.)
(β„²π‘₯𝐴 ↔ βˆ€π‘¦βˆ€π‘§β¦‹π‘¦ / π‘₯⦌𝐴 = ⦋𝑧 / π‘₯⦌𝐴)
 
Theoremcsbab 4437* Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.)
⦋𝐴 / π‘₯⦌{𝑦 ∣ πœ‘} = {𝑦 ∣ [𝐴 / π‘₯]πœ‘}
 
Theoremcsbun 4438 Distribution of class substitution over union of two classes. (Contributed by Drahflow, 23-Sep-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by NM, 13-Sep-2018.)
⦋𝐴 / π‘₯⦌(𝐡 βˆͺ 𝐢) = (⦋𝐴 / π‘₯⦌𝐡 βˆͺ ⦋𝐴 / π‘₯⦌𝐢)
 
Theoremcsbin 4439 Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) (Revised by NM, 18-Aug-2018.)
⦋𝐴 / π‘₯⦌(𝐡 ∩ 𝐢) = (⦋𝐴 / π‘₯⦌𝐡 ∩ ⦋𝐴 / π‘₯⦌𝐢)
 
Theoremcsbie2df 4440* Conversion of implicit substitution to explicit class substitution. This version of csbiedf 3924 avoids a disjointness condition on π‘₯, 𝐴 and π‘₯, 𝐷 by substituting twice. Deduction form of csbie2 3935. (Contributed by AV, 29-Mar-2024.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ β„²π‘₯𝐢)    &   (πœ‘ β†’ β„²π‘₯𝐷)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   ((πœ‘ ∧ π‘₯ = 𝑦) β†’ 𝐡 = 𝐢)    &   ((πœ‘ ∧ 𝑦 = 𝐴) β†’ 𝐢 = 𝐷)    β‡’   (πœ‘ β†’ ⦋𝐴 / π‘₯⦌𝐡 = 𝐷)
 
Theorem2nreu 4441* If there are two different sets fulfilling a wff (by implicit substitution), then there is no unique set fulfilling the wff. (Contributed by AV, 20-Jun-2023.)
(π‘₯ = 𝐴 β†’ (πœ‘ ↔ πœ“))    &   (π‘₯ = 𝐡 β†’ (πœ‘ ↔ πœ’))    β‡’   ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐴 β‰  𝐡) β†’ ((πœ“ ∧ πœ’) β†’ Β¬ βˆƒ!π‘₯ ∈ 𝑋 πœ‘))
 
Theoremun00 4442 Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
((𝐴 = βˆ… ∧ 𝐡 = βˆ…) ↔ (𝐴 βˆͺ 𝐡) = βˆ…)
 
Theoremvss 4443 Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(V βŠ† 𝐴 ↔ 𝐴 = V)
 
Theorem0pss 4444 The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
(βˆ… ⊊ 𝐴 ↔ 𝐴 β‰  βˆ…)
 
Theoremnpss0 4445 No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Β¬ 𝐴 ⊊ βˆ…
 
Theorempssv 4446 Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.)
(𝐴 ⊊ V ↔ Β¬ 𝐴 = V)
 
Theoremdisj 4447* Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.)
((𝐴 ∩ 𝐡) = βˆ… ↔ βˆ€π‘₯ ∈ 𝐴 Β¬ π‘₯ ∈ 𝐡)
 
TheoremdisjOLD 4448* Obsolete version of disj 4447 as of 28-Jun-2024. (Contributed by NM, 17-Feb-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∩ 𝐡) = βˆ… ↔ βˆ€π‘₯ ∈ 𝐴 Β¬ π‘₯ ∈ 𝐡)
 
Theoremdisjr 4449* Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
((𝐴 ∩ 𝐡) = βˆ… ↔ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ 𝐴)
 
Theoremdisj1 4450* Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
((𝐴 ∩ 𝐡) = βˆ… ↔ βˆ€π‘₯(π‘₯ ∈ 𝐴 β†’ Β¬ π‘₯ ∈ 𝐡))
 
Theoremreldisj 4451 Two ways of saying that two classes are disjoint, using the complement of 𝐡 relative to a universe 𝐢. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.)
(𝐴 βŠ† 𝐢 β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ 𝐴 βŠ† (𝐢 βˆ– 𝐡)))
 
TheoremreldisjOLD 4452 Obsolete version of reldisj 4451 as of 28-Jun-2024. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 βŠ† 𝐢 β†’ ((𝐴 ∩ 𝐡) = βˆ… ↔ 𝐴 βŠ† (𝐢 βˆ– 𝐡)))
 
Theoremdisj3 4453 Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
((𝐴 ∩ 𝐡) = βˆ… ↔ 𝐴 = (𝐴 βˆ– 𝐡))
 
Theoremdisjne 4454 Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(((𝐴 ∩ 𝐡) = βˆ… ∧ 𝐢 ∈ 𝐴 ∧ 𝐷 ∈ 𝐡) β†’ 𝐢 β‰  𝐷)
 
Theoremdisjeq0 4455 Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.)
((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 = 𝐡 ↔ (𝐴 = βˆ… ∧ 𝐡 = βˆ…)))
 
Theoremdisjel 4456 A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.)
(((𝐴 ∩ 𝐡) = βˆ… ∧ 𝐢 ∈ 𝐴) β†’ Β¬ 𝐢 ∈ 𝐡)
 
Theoremdisj2 4457 Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
((𝐴 ∩ 𝐡) = βˆ… ↔ 𝐴 βŠ† (V βˆ– 𝐡))
 
Theoremdisj4 4458 Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
((𝐴 ∩ 𝐡) = βˆ… ↔ Β¬ (𝐴 βˆ– 𝐡) ⊊ 𝐴)
 
Theoremssdisj 4459 Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.)
((𝐴 βŠ† 𝐡 ∧ (𝐡 ∩ 𝐢) = βˆ…) β†’ (𝐴 ∩ 𝐢) = βˆ…)
 
Theoremdisjpss 4460 A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.)
(((𝐴 ∩ 𝐡) = βˆ… ∧ 𝐡 β‰  βˆ…) β†’ 𝐴 ⊊ (𝐴 βˆͺ 𝐡))
 
Theoremundisj1 4461 The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
(((𝐴 ∩ 𝐢) = βˆ… ∧ (𝐡 ∩ 𝐢) = βˆ…) ↔ ((𝐴 βˆͺ 𝐡) ∩ 𝐢) = βˆ…)
 
Theoremundisj2 4462 The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
(((𝐴 ∩ 𝐡) = βˆ… ∧ (𝐴 ∩ 𝐢) = βˆ…) ↔ (𝐴 ∩ (𝐡 βˆͺ 𝐢)) = βˆ…)
 
Theoremssindif0 4463 Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
(𝐴 βŠ† 𝐡 ↔ (𝐴 ∩ (V βˆ– 𝐡)) = βˆ…)
 
Theoreminelcm 4464 The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.)
((𝐴 ∈ 𝐡 ∧ 𝐴 ∈ 𝐢) β†’ (𝐡 ∩ 𝐢) β‰  βˆ…)
 
Theoremminel 4465 A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) (Proof shortened by JJ, 14-Jul-2021.)
((𝐴 ∈ 𝐡 ∧ (𝐢 ∩ 𝐡) = βˆ…) β†’ Β¬ 𝐴 ∈ 𝐢)
 
Theoremundif4 4466 Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴 ∩ 𝐢) = βˆ… β†’ (𝐴 βˆͺ (𝐡 βˆ– 𝐢)) = ((𝐴 βˆͺ 𝐡) βˆ– 𝐢))
 
Theoremdisjssun 4467 Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βŠ† (𝐡 βˆͺ 𝐢) ↔ 𝐴 βŠ† 𝐢))
 
Theoremvdif0 4468 Universal class equality in terms of empty difference. (Contributed by NM, 17-Sep-2003.)
(𝐴 = V ↔ (V βˆ– 𝐴) = βˆ…)
 
Theoremdifrab0eq 4469* If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
((𝑉 βˆ– {π‘₯ ∈ 𝑉 ∣ πœ‘}) = βˆ… ↔ 𝑉 = {π‘₯ ∈ 𝑉 ∣ πœ‘})
 
Theorempssnel 4470* A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996.)
(𝐴 ⊊ 𝐡 β†’ βˆƒπ‘₯(π‘₯ ∈ 𝐡 ∧ Β¬ π‘₯ ∈ 𝐴))
 
Theoremdisjdif 4471 A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.)
(𝐴 ∩ (𝐡 βˆ– 𝐴)) = βˆ…
 
Theoremdisjdifr 4472 A class and its relative complement are disjoint. (Contributed by Thierry Arnoux, 29-Nov-2023.)
((𝐡 βˆ– 𝐴) ∩ 𝐴) = βˆ…
 
Theoremdifin0 4473 The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴 ∩ 𝐡) βˆ– 𝐡) = βˆ…
 
Theoremunvdif 4474 The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.)
(𝐴 βˆͺ (V βˆ– 𝐴)) = V
 
Theoremundif1 4475 Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4471). Theorem 35 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.)
((𝐴 βˆ– 𝐡) βˆͺ 𝐡) = (𝐴 βˆͺ 𝐡)
 
Theoremundif2 4476 Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif 4471). Part of proof of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 19-May-1998.)
(𝐴 βˆͺ (𝐡 βˆ– 𝐴)) = (𝐴 βˆͺ 𝐡)
 
Theoremundifabs 4477 Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
(𝐴 βˆͺ (𝐴 βˆ– 𝐡)) = 𝐴
 
Theoreminundif 4478 The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴 ∩ 𝐡) βˆͺ (𝐴 βˆ– 𝐡)) = 𝐴
 
Theoremdisjdif2 4479 The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
((𝐴 ∩ 𝐡) = βˆ… β†’ (𝐴 βˆ– 𝐡) = 𝐴)
 
Theoremdifun2 4480 Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.)
((𝐴 βˆͺ 𝐡) βˆ– 𝐡) = (𝐴 βˆ– 𝐡)
 
Theoremundif 4481 Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.)
(𝐴 βŠ† 𝐡 ↔ (𝐴 βˆͺ (𝐡 βˆ– 𝐴)) = 𝐡)
 
Theoremundifr 4482 Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.)
(𝐴 βŠ† 𝐡 ↔ ((𝐡 βˆ– 𝐴) βˆͺ 𝐴) = 𝐡)
 
TheoremundifrOLD 4483 Obsolete version of undifr 4482 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 βŠ† 𝐡 ↔ ((𝐡 βˆ– 𝐴) βˆͺ 𝐴) = 𝐡)
 
Theoremundif5 4484 An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.)
((𝐴 ∩ 𝐡) = βˆ… β†’ ((𝐴 βˆͺ 𝐡) βˆ– 𝐡) = 𝐴)
 
Theoremssdifin0 4485 A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
(𝐴 βŠ† (𝐡 βˆ– 𝐢) β†’ (𝐴 ∩ 𝐢) = βˆ…)
 
Theoremssdifeq0 4486 A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
(𝐴 βŠ† (𝐡 βˆ– 𝐴) ↔ 𝐴 = βˆ…)
 
Theoremssundif 4487 A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.)
(𝐴 βŠ† (𝐡 βˆͺ 𝐢) ↔ (𝐴 βˆ– 𝐡) βŠ† 𝐢)
 
Theoremdifcom 4488 Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.)
((𝐴 βˆ– 𝐡) βŠ† 𝐢 ↔ (𝐴 βˆ– 𝐢) βŠ† 𝐡)
 
Theorempssdifcom1 4489 Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
((𝐴 βŠ† 𝐢 ∧ 𝐡 βŠ† 𝐢) β†’ ((𝐢 βˆ– 𝐴) ⊊ 𝐡 ↔ (𝐢 βˆ– 𝐡) ⊊ 𝐴))
 
Theorempssdifcom2 4490 Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
((𝐴 βŠ† 𝐢 ∧ 𝐡 βŠ† 𝐢) β†’ (𝐡 ⊊ (𝐢 βˆ– 𝐴) ↔ 𝐴 ⊊ (𝐢 βˆ– 𝐡)))
 
Theoremdifdifdir 4491 Distributive law for class difference. Exercise 4.8 of [Stoll] p. 16. (Contributed by NM, 18-Aug-2004.)
((𝐴 βˆ– 𝐡) βˆ– 𝐢) = ((𝐴 βˆ– 𝐢) βˆ– (𝐡 βˆ– 𝐢))
 
Theoremuneqdifeq 4492 Two ways to say that 𝐴 and 𝐡 partition 𝐢 (when 𝐴 and 𝐡 don't overlap and 𝐴 is a part of 𝐢). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.)
((𝐴 βŠ† 𝐢 ∧ (𝐴 ∩ 𝐡) = βˆ…) β†’ ((𝐴 βˆͺ 𝐡) = 𝐢 ↔ (𝐢 βˆ– 𝐴) = 𝐡))
 
Theoremraldifeq 4493* Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.)
(πœ‘ β†’ 𝐴 βŠ† 𝐡)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ (𝐡 βˆ– 𝐴)πœ“)    β‡’   (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝐴 πœ“ ↔ βˆ€π‘₯ ∈ 𝐡 πœ“))
 
Theoremr19.2z 4494* Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1980). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.)
((𝐴 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝐴 πœ‘) β†’ βˆƒπ‘₯ ∈ 𝐴 πœ‘)
 
Theoremr19.2zb 4495* A response to the notion that the condition 𝐴 β‰  βˆ… can be removed in r19.2z 4494. Interestingly enough, πœ‘ does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.)
(𝐴 β‰  βˆ… ↔ (βˆ€π‘₯ ∈ 𝐴 πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 πœ‘))
 
Theoremr19.3rz 4496* Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.)
β„²π‘₯πœ‘    β‡’   (𝐴 β‰  βˆ… β†’ (πœ‘ ↔ βˆ€π‘₯ ∈ 𝐴 πœ‘))
 
Theoremr19.28z 4497* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
β„²π‘₯πœ‘    β‡’   (𝐴 β‰  βˆ… β†’ (βˆ€π‘₯ ∈ 𝐴 (πœ‘ ∧ πœ“) ↔ (πœ‘ ∧ βˆ€π‘₯ ∈ 𝐴 πœ“)))
 
Theoremr19.3rzv 4498* Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997.)
(𝐴 β‰  βˆ… β†’ (πœ‘ ↔ βˆ€π‘₯ ∈ 𝐴 πœ‘))
 
Theoremr19.9rzv 4499* Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.)
(𝐴 β‰  βˆ… β†’ (πœ‘ ↔ βˆƒπ‘₯ ∈ 𝐴 πœ‘))
 
Theoremr19.28zv 4500* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.)
(𝐴 β‰  βˆ… β†’ (βˆ€π‘₯ ∈ 𝐴 (πœ‘ ∧ πœ“) ↔ (πœ‘ ∧ βˆ€π‘₯ ∈ 𝐴 πœ“)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47842
  Copyright terms: Public domain < Previous  Next >