![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eq0rdv | Structured version Visualization version GIF version |
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2108, df-clel 2810. (Revised by Gino Giotto, 6-Sep-2024.) |
Ref | Expression |
---|---|
eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0rdv.1 | . . 3 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
3 | dfnul4 4324 | . . . 4 ⊢ ∅ = {𝑦 ∣ ⊥} | |
4 | 3 | eqeq2i 2745 | . . 3 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
5 | dfcleq 2725 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
6 | df-clab 2710 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | sbv 2091 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
8 | 6, 7 | bitri 274 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
9 | 8 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
10 | 9 | albii 1821 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
11 | nbfal 1556 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
12 | 11 | bicomi 223 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
13 | 12 | albii 1821 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
14 | 10, 13 | bitri 274 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
15 | 4, 5, 14 | 3bitrri 297 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
16 | 2, 15 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ⊥wfal 1553 [wsb 2067 ∈ wcel 2106 {cab 2709 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-dif 3951 df-nul 4323 |
This theorem is referenced by: map0b 8876 disjen 9133 mapdom1 9141 pwxpndom2 10659 fzdisj 13527 smu01lem 16425 prmreclem5 16852 vdwap0 16908 natfval 17896 fucbas 17911 fuchom 17912 fuchomOLD 17913 coafval 18013 efgval 19584 lsppratlem6 20764 lbsextlem4 20773 psrvscafval 21508 cfinufil 23431 ufinffr 23432 fin1aufil 23435 bldisj 23903 reconnlem1 24341 pcofval 24525 bcthlem5 24844 volfiniun 25063 fta1g 25684 fta1 25820 rpvmasum 27026 0ringprmidl 32563 0ringmon1p 32631 0ringirng 32748 unblimceq0 35378 bj-ab0 35783 bj-projval 35872 finxpnom 36277 ipo0 43198 ifr0 43199 limclner 44357 |
Copyright terms: Public domain | W3C validator |