Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eq0rdv | Structured version Visualization version GIF version |
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2109, df-clel 2817. (Revised by Gino Giotto, 6-Sep-2024.) |
Ref | Expression |
---|---|
eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0rdv.1 | . . 3 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
3 | dfnul4 4259 | . . . 4 ⊢ ∅ = {𝑦 ∣ ⊥} | |
4 | 3 | eqeq2i 2752 | . . 3 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
5 | dfcleq 2732 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
6 | df-clab 2717 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | sbv 2092 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
8 | 6, 7 | bitri 274 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
9 | 8 | bibi2i 338 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
10 | 9 | albii 1822 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
11 | nbfal 1554 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
12 | 11 | bicomi 223 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
13 | 12 | albii 1822 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
14 | 10, 13 | bitri 274 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
15 | 4, 5, 14 | 3bitrri 298 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
16 | 2, 15 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ⊥wfal 1551 [wsb 2068 ∈ wcel 2107 {cab 2716 ∅c0 4257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-dif 3891 df-nul 4258 |
This theorem is referenced by: map0b 8680 disjen 8930 mapdom1 8938 pwxpndom2 10430 fzdisj 13292 smu01lem 16201 prmreclem5 16630 vdwap0 16686 natfval 17671 fucbas 17686 fuchom 17687 fuchomOLD 17688 coafval 17788 efgval 19332 lsppratlem6 20423 lbsextlem4 20432 psrvscafval 21168 cfinufil 23088 ufinffr 23089 fin1aufil 23092 bldisj 23560 reconnlem1 23998 pcofval 24182 bcthlem5 24501 volfiniun 24720 fta1g 25341 fta1 25477 rpvmasum 26683 0ringprmidl 31634 unblimceq0 34696 bj-ab0 35102 bj-projval 35195 finxpnom 35581 ipo0 42074 ifr0 42075 limclner 43199 |
Copyright terms: Public domain | W3C validator |