Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eq0rdv | Structured version Visualization version GIF version |
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2110, df-clel 2817. (Revised by Gino Giotto, 6-Sep-2024.) |
Ref | Expression |
---|---|
eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0rdv.1 | . . 3 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
3 | dfnul4 4255 | . . . 4 ⊢ ∅ = {𝑦 ∣ ⊥} | |
4 | 3 | eqeq2i 2751 | . . 3 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
5 | dfcleq 2731 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
6 | df-clab 2716 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
7 | sbv 2092 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
8 | 6, 7 | bitri 274 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
9 | 8 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
10 | 9 | albii 1823 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
11 | nbfal 1554 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
12 | 11 | bicomi 223 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
13 | 12 | albii 1823 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
14 | 10, 13 | bitri 274 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
15 | 4, 5, 14 | 3bitrri 297 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
16 | 2, 15 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ⊥wfal 1551 [wsb 2068 ∈ wcel 2108 {cab 2715 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-dif 3886 df-nul 4254 |
This theorem is referenced by: map0b 8629 disjen 8870 mapdom1 8878 pwxpndom2 10352 fzdisj 13212 smu01lem 16120 prmreclem5 16549 vdwap0 16605 natfval 17578 fucbas 17593 fuchom 17594 fuchomOLD 17595 coafval 17695 efgval 19238 lsppratlem6 20329 lbsextlem4 20338 psrvscafval 21069 cfinufil 22987 ufinffr 22988 fin1aufil 22991 bldisj 23459 reconnlem1 23895 pcofval 24079 bcthlem5 24397 volfiniun 24616 fta1g 25237 fta1 25373 rpvmasum 26579 0ringprmidl 31527 unblimceq0 34614 bj-ab0 35020 bj-projval 35113 finxpnom 35499 ipo0 41956 ifr0 41957 limclner 43082 |
Copyright terms: Public domain | W3C validator |