MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0rdv Structured version   Visualization version   GIF version

Theorem eq0rdv 4335
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2110, df-clel 2817. (Revised by Gino Giotto, 6-Sep-2024.)
Hypothesis
Ref Expression
eq0rdv.1 (𝜑 → ¬ 𝑥𝐴)
Assertion
Ref Expression
eq0rdv (𝜑𝐴 = ∅)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem eq0rdv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eq0rdv.1 . . 3 (𝜑 → ¬ 𝑥𝐴)
21alrimiv 1931 . 2 (𝜑 → ∀𝑥 ¬ 𝑥𝐴)
3 dfnul4 4255 . . . 4 ∅ = {𝑦 ∣ ⊥}
43eqeq2i 2751 . . 3 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
5 dfcleq 2731 . . 3 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
6 df-clab 2716 . . . . . . 7 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥)
7 sbv 2092 . . . . . . 7 ([𝑥 / 𝑦]⊥ ↔ ⊥)
86, 7bitri 274 . . . . . 6 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥)
98bibi2i 337 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥𝐴 ↔ ⊥))
109albii 1823 . . . 4 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥(𝑥𝐴 ↔ ⊥))
11 nbfal 1554 . . . . . 6 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
1211bicomi 223 . . . . 5 ((𝑥𝐴 ↔ ⊥) ↔ ¬ 𝑥𝐴)
1312albii 1823 . . . 4 (∀𝑥(𝑥𝐴 ↔ ⊥) ↔ ∀𝑥 ¬ 𝑥𝐴)
1410, 13bitri 274 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥𝐴)
154, 5, 143bitrri 297 . 2 (∀𝑥 ¬ 𝑥𝐴𝐴 = ∅)
162, 15sylib 217 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537   = wceq 1539  wfal 1551  [wsb 2068  wcel 2108  {cab 2715  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-dif 3886  df-nul 4254
This theorem is referenced by:  map0b  8629  disjen  8870  mapdom1  8878  pwxpndom2  10352  fzdisj  13212  smu01lem  16120  prmreclem5  16549  vdwap0  16605  natfval  17578  fucbas  17593  fuchom  17594  fuchomOLD  17595  coafval  17695  efgval  19238  lsppratlem6  20329  lbsextlem4  20338  psrvscafval  21069  cfinufil  22987  ufinffr  22988  fin1aufil  22991  bldisj  23459  reconnlem1  23895  pcofval  24079  bcthlem5  24397  volfiniun  24616  fta1g  25237  fta1  25373  rpvmasum  26579  0ringprmidl  31527  unblimceq0  34614  bj-ab0  35020  bj-projval  35113  finxpnom  35499  ipo0  41956  ifr0  41957  limclner  43082
  Copyright terms: Public domain W3C validator