| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0rdv | Structured version Visualization version GIF version | ||
| Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2111, df-clel 2803. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 | . . 3 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 3 | dfnul4 4298 | . . . 4 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 4 | 3 | eqeq2i 2742 | . . 3 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 5 | dfcleq 2722 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 6 | df-clab 2708 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | sbv 2089 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 8 | 6, 7 | bitri 275 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 9 | 8 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 10 | 9 | albii 1819 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
| 11 | nbfal 1555 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 12 | 11 | bicomi 224 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
| 13 | 12 | albii 1819 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 14 | 10, 13 | bitri 275 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 15 | 4, 5, 14 | 3bitrri 298 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| 16 | 2, 15 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊥wfal 1552 [wsb 2065 ∈ wcel 2109 {cab 2707 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: map0b 8856 disjen 9098 mapdom1 9106 pwxpndom2 10618 fzdisj 13512 smu01lem 16455 prmreclem5 16891 vdwap0 16947 natfval 17911 fucbas 17925 fuchom 17926 coafval 18026 efgval 19647 lsppratlem6 21062 lbsextlem4 21071 psrvscafval 21857 cfinufil 23815 ufinffr 23816 fin1aufil 23819 bldisj 24286 reconnlem1 24715 pcofval 24910 bcthlem5 25228 volfiniun 25448 fta1g 26075 fta1 26216 rpvmasum 27437 0ringprmidl 33420 0ringmon1p 33526 0ringirng 33684 unblimceq0 36495 bj-ab0 36896 bj-projval 36984 finxpnom 37389 ipo0 44438 ifr0 44439 limclner 45649 iineq0 48808 |
| Copyright terms: Public domain | W3C validator |