| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0rdv | Structured version Visualization version GIF version | ||
| Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2111, df-clel 2803. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 | . . 3 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 3 | dfnul4 4294 | . . . 4 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 4 | 3 | eqeq2i 2742 | . . 3 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 5 | dfcleq 2722 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 6 | df-clab 2708 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | sbv 2089 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 8 | 6, 7 | bitri 275 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 9 | 8 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 10 | 9 | albii 1819 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
| 11 | nbfal 1555 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 12 | 11 | bicomi 224 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
| 13 | 12 | albii 1819 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 14 | 10, 13 | bitri 275 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 15 | 4, 5, 14 | 3bitrri 298 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| 16 | 2, 15 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊥wfal 1552 [wsb 2065 ∈ wcel 2109 {cab 2707 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: map0b 8833 disjen 9075 mapdom1 9083 pwxpndom2 10594 fzdisj 13488 smu01lem 16431 prmreclem5 16867 vdwap0 16923 natfval 17887 fucbas 17901 fuchom 17902 coafval 18002 efgval 19623 lsppratlem6 21038 lbsextlem4 21047 psrvscafval 21833 cfinufil 23791 ufinffr 23792 fin1aufil 23795 bldisj 24262 reconnlem1 24691 pcofval 24886 bcthlem5 25204 volfiniun 25424 fta1g 26051 fta1 26192 rpvmasum 27413 0ringprmidl 33393 0ringmon1p 33499 0ringirng 33657 unblimceq0 36468 bj-ab0 36869 bj-projval 36957 finxpnom 37362 ipo0 44411 ifr0 44412 limclner 45622 iineq0 48781 |
| Copyright terms: Public domain | W3C validator |