| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0rdv | Structured version Visualization version GIF version | ||
| Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) Avoid ax-8 2109, df-clel 2808. (Revised by GG, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 | . . 3 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
| 2 | 1 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 3 | dfnul4 4315 | . . . 4 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 4 | 3 | eqeq2i 2747 | . . 3 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 5 | dfcleq 2727 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 6 | df-clab 2713 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 7 | sbv 2087 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 8 | 6, 7 | bitri 275 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 9 | 8 | bibi2i 337 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 10 | 9 | albii 1818 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
| 11 | nbfal 1554 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 12 | 11 | bicomi 224 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
| 13 | 12 | albii 1818 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 14 | 10, 13 | bitri 275 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 15 | 4, 5, 14 | 3bitrri 298 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| 16 | 2, 15 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ⊥wfal 1551 [wsb 2063 ∈ wcel 2107 {cab 2712 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: map0b 8905 disjen 9156 mapdom1 9164 pwxpndom2 10687 fzdisj 13573 smu01lem 16504 prmreclem5 16940 vdwap0 16996 natfval 17965 fucbas 17979 fuchom 17980 coafval 18080 efgval 19703 lsppratlem6 21122 lbsextlem4 21131 psrvscafval 21922 cfinufil 23882 ufinffr 23883 fin1aufil 23886 bldisj 24353 reconnlem1 24784 pcofval 24979 bcthlem5 25298 volfiniun 25518 fta1g 26145 fta1 26286 rpvmasum 27506 0ringprmidl 33412 0ringmon1p 33518 0ringirng 33676 unblimceq0 36467 bj-ab0 36868 bj-projval 36956 finxpnom 37361 ipo0 44425 ifr0 44426 limclner 45623 |
| Copyright terms: Public domain | W3C validator |